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Números reais imaginados

Conjunto de Mandelbrot (fonte: Wikipe-
dia)

Representação esquemática ilustrada da
inclusão dos sistemas numéricos (fonte:
thinkzone.wlonk.com)

Muito se fala de números. Aqui e ali sem-
pre aparecem quando menos se espera. Sejam
eles naturais, inteiros, racionais, reais ou com-
plexos. Usando os números naturais como
base, os quais servem para contar, obtêm-se
depois por construção os números inteiros e
os racionais. Os números reais aparecem tam-
bém por um processo construtivo e estudam-
se todas as suas propriedades e interacções —
todas, até à exaustão! No quadro da figura
ao lado podemos ver como a construção dos
sistemas numéricos, que começa por isso com
os números naturais, e que depois se extende,
por sucessivas construções, até aos números
reais e complexos.
Os números naturais com as operações de adi-
ção e multiplicação formam um sistema al-
gébrico designado por semi-anel. Os núme-
ros inteiros surgem da necessidade de resol-
ver equações da forma x+ a = b cuja solução
queremos representar por x = b − a. Os nú-
meros racionais sugem da necessidade de re-
solver as equações da forma ax = b, sempre
que a 6= 0, cuja solução queremos representar
por x = b

a . A passagem dos racionais para os
reais é mais delicada e tem a ver com a neces-
sidade de calcular limites de certas sucessões
de números racionais. Admitindo que os nú-
meros reais são a conceptualização formal de

um conceito bastante real tal como os pontos sobre uma reta geométrica, chegamos na-
turalmente aos números complexos como os pontos sobre um plano, ou seja, são pares
de numeros reais constituindo um número (complexo) que se caracteriza por ter uma
componente real e outra imaginária. O conjunto de Mandelbrot é um bonito exem-
plo de um conjunto de pontos, aos quais chamamos números, mas serão eles reais ou
apenas imaginados?

Ficha Técnica
Director: Nelson Martins Ferreira
Proprietário: Instituto Politécnico de Leiria, anotado na ERC
Morada: Rua General Norton de Matos; Apartado 4133; 2411-901 Leiria, Portugal
Director Adjunto: Nuno Alves; Sub Director: Artur Mateus
Editor: Nelson Martins Ferreira; Sede de Redação: Rua General Norton de Matos; Apartado
4133; 2411-901 Leiria, Portugal; Contacto: scripta.ingenia@ipleiria.pt
Colaboradores e estatuto editorial: http://cdrsp.ipleiria.pt/scriptaingenia/

Scripta-Ingenia, Winter Solstice, December 21, 2018. (ISSN: 2183-6000)
m http://cdrsp.ipleiria.pt T (351) 244-569441 B scripta.ingenia@ipleiria.pt Page 1

http://cdrsp.ipleiria.pt
mailto:scripta.ingenia@ipleiria.pt


A Scripta-Ingenia assume-se como uma revista de divulgação científica tratando temas da
ciência e da tecnologia, cobrindo todas as áreas do saber no domínio das ciências exactas ou
aplicadas. Interessa-se ainda por artigos de opinião, sobre tópicos científicos ou não, desde
que escritos por autores na área das ciências e da engenharia, e que reflitam as suas opiniões
enquanto membros dessa comunidade.

Director and Chief Editor — Nelson Martins-Ferreira
CDRSP-ESTG, IPLeiria

I cannot help feeling there is something essentially wrong about love. Friends may quarrel or drift apart,
close relations too, but there is not this pang, this pathos, this fatality which clings to love. Friendship
never has that doomed look. Why, what is the matter? I have not stopped loving you, but because I cannot
go on kissing your dim dear face, we must part, we must part. Why is this so? What is this mysterious
exclusiveness? One may have a thousand friends, but only one love-mate. Harems have nothing to do
with this matter: I am speaking of dance, not gymnastics. Or can one imagine a tremendous Turk loving
every one of his four hundred wives as I love you? For if I say ’two’ I have started to count and there
is no end to it. There is only one real number: One. And love, apparently, is the best exponent of this
singularity.

Vladimir Nabokov, The Real Life of Sebastian Knight
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Abstract In this article are computed magnetic solutions of Einstein Maxwell Chern-Simons theory coupled to a
dilaton-like scalar field. These solutions are computed by applying a space-time duality suggested by the author to
known electric solutions of the same theory. As a redundancy check for the space-time duality it is explicitly shown
that the magnetic configurations obtained are, as expected, solutions of the equations of motion. The magnetic
configurations have metric determinant

√
−g ∼ rp for the range of the parameter p ∈] − ∞,+∞[/{−1} and are

interpreted either as magnetic string-like configurations, configurations driven by an externally applied magnetic
field or cosmological-like solutions with background magnetic fields.

1 Introduction

The first studies on classical gravitational solutions in
2 + 1-dimensional space-times date back to 1984 and ad-
dressed Cosmological Einstein theories [1, 2]. Later deve-
lopments addressed neutral solutions for Einstein theory
(AdS BTZ black-hole) [3], Einstein Chern-Simons the-
ory [4, 5] and the rotating BTZ black-hole [6, 7]. Fol-
lowing these developments charged solutions were stu-
died for Einstein Maxwell Chern-Simons theory [8, 9, 10,
11, 12], Einstein Maxwell theory [13, 14], Dilaton Eins-
tein Maxwell theories [15, 16, 17, 18, 19, 20, 21, 22] and
electric solutions of Einstein Maxwell Chern-Simons the-
ory with a scalar field [23], as well as for Chern-Simons
gravity [24, 25, 26, 27, 28, 29, 30].

In this article are computed new magnetic solutions
that further extend the known existing solutions for Eins-
tein Maxwell Chern-Simons theory coupled to a Dilaton-
like scalar field. As a motivation for the several fields
and sectors of the full theory studied here it is relevant
to note that, when considering 2 + 1-dimensional gravi-
tational solutions the inclusion of a scalar field is a natu-
ral extension of Einstein theory and it is justified by no-
ting that a dimensional reduction from 3 + 1-dimensions
generates such a scalar field, whether it is a Dilaton fi-
eld [15, 16, 31] or obtained by gauging a higher dimen-
sional symmetry [32, 33]. In addition when considering
electromagnetic field solutions in 2 + 1-dimensions the
Chern-Simons term [34, 35] is also a natural extension
of Maxwell theory, at quantum level only the Maxwell
Chern-Simons theory is consistent such that the Chern-
Simons term is a quantum correction of the Maxwell the-
ory [36, 37, 38, 39].

As possible physical frameworks were such solutions
may be relevant we note that 2 + 1-dimensional theo-
ries are often considered simpler laboratories for higher
dimensional theories [7], higher dimensional examples

with similar frameworks to the one discussed here are:
inflationary models with exponential potentials [40]; do-
main walls in 4+1-dimensions [41]; and cosmological
solutions in 4+1-dimensions [42, 43]. In addition of-
ten 3 + 1-dimensional systems exhibiting cylindrical sym-
metry are considered as effective 2 + 1-dimensional sys-
tems [32, 33, 44] as it is the example of cylindrical gravi-
tational waves [45, 46, 47, 48, 49].

To compute these new solutions it is applied the
space-time suggested by the author in [50] to the pre-
viously computed electric solutions for this theory [23].
These dualities constitutes a generalization of a duality
previously suggested in [4]. Shortly resuming the results
obtained in [50], starting from a specific metric parame-
terization and Maxwell Chern-Simons Lagrangian

ds2 = −f2dt2 + dr2 + h2(dϕ+Adt)2 ,

LMCS = F ∧ ∗F +mA ∧ F ,
(1.1)

with the standard electric and magnetic field definitions

E∗ = Ftr = ∂tAr − ∂rAt ,

B∗ = Frϕ = ∂rAϕ − ∂ϕAr ,
(1.2)

where stared fields E∗ and B∗ stand for the electromag-
netic fields in a specific coordinate frame while non sta-
red field E and B stand for the fields in the Cartan-frame
(details are given in appendix A), there are three possible
dualities that map electric into magnetic solutions. Speci-
fically the interchange between time and angular variable
corresponding to the two distinct duality maps{

t → iϕ

ϕ → it
⇒

{
f → ih

h → if
,

{
E∗ → −iB∗

B∗ → −iE∗ ,
(1.3)
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2 MAGNETIC SOLUTIONS FOR MINKOWSKI SPACE-TIME

and{
t → ϕ

ϕ → t
⇒

{
f → h

h → f
,

{
E∗ → −B∗

B∗ → −E∗ .
(1.4)

A third duality map relates both the duality maps (1.3)
and (1.4) by a double Wick rotation{

t → it

ϕ → iϕ
⇒

{
f → if

h → ih
,

{
E∗ → iE∗

B∗ → iB∗ .
(1.5)

This work is organized as follows, in section 2 the
space-time dualities are applied to the electric gravita-
tional solutions computed in [23] which are in this way
mapped into new magnetic gravitational solutions. Are
also analyzed the singularities, curvature, horizons, mass,
angular momentum and magnetic flux for these magne-
tic configurations. In section 3 are summarized and dis-
cussed the results obtained, in particular are interpreted
either as magnetic string-like solutions, configurations
driven by an external magnetic field or cosmological-like
solutions. In addition in appendix A are re-derived direc-
tly from the equations of motion in the Cartan-frame the
solutions discussed in section 2 and in appendix B are lis-
ted, for particular cases not included in the main text, the
expressions for the mass, angular momentum and mag-
netic flux of the magnetic configurations.

2 Magnetic solutions for Minkowski
space-time

In this section we derive explicit magnetic solutions for
Einstein Maxwell Chern-Simons coupled to a scalar fi-
eld employing the space-time duality developed in the
previous section applied to the electric solutions compu-
ted in [23]. Hence we are considering the same Action
of [23] that explicitly written in tensor notation is

S =
1

2π

∫
M

d3x
{√
−g̃
[
eaφ

(
R̃+ 2λ(∂φ)2

)
− ebφΛ

+ε̂
ecφ

2
F̃µν F̃

µν

]
− ε̂m

2
εµνλÃµF̃νλ

}
,

(2.1)
where ε̂ = ±1 sets the relative sign between the gauge
and gravitational sector and the remaining terms follow
the conventions of [23] such that the metric has Min-
kowski ADM signature diag(−,+,+) and we are em-
ploying natural units clight = ~ = 1. We recall that
ε̂ = +1 stands for a ghost gauge sector such that the
gauge fields contribution to the total energy is negative
while ε̂ = −1 stands for a standard gauge sector such
that the gauge fields contribution to the total energy is
positive [51, 23, 50].

2.1 Obtaining the solutions employing
space-time duality

Directly applying the duality map (1.3) to the electric so-
lutions studied in [23] accounts for mapping the metric
parameterization and Maxwell Chern-Simons (1.1) into

ds̃2 = −f̃2(dt+ Ãdϕ)2 + dr2 + h̃2dϕ2 ,

L̃MCS = −F̃ ∧ ∗F̃ −mÃ ∧ F̃ ,
(2.2)

which is equivalent to the metric components map


g̃00 = −f2 + h2A2

g̃11 = 1
g̃22 = h2

g̃02 = h2A

,


g̃00 = −f̃2
g̃11 = 1

g̃22 = h̃2 − f̃2Ã2

g̃02 = −f̃2Ã

,

(2.3)
and the field components map



f2 =
f̃2 h̃2

h̃2 − f̃2 Ã2

h2 = h̃2 − f̃2 Ã2

A = − Ã f̃2

h̃2 − f̃2 Ã2

,


E∗ = iB̃∗

(
f̃ = f, h̃ = h

)
B∗ = iẼ∗

(
f̃ = f, h̃ = h

) .

(2.4)

Hence the magnetic solutions for the action (2.1) with
a = 0, c = −b/2 and λ 6= b2/8 [23]

φ = −2

b
ln(Cφ r)

f̃ = Cf
√
r

h̃ = Ch r
p− 1

2

Ã = CA r
p−1 + θ

B̃∗ = CB r
p−2

Ãϕ =
CB
p− 1

rp−1

(2.5)

where Ch, Cf , b and θ are free parameters and the cons-
tants λ, Cφ, CA and CB have the following allowed va-
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lues

λ = −b
2

8
p ,

Cφ = |m|
√

1− 6x

1− 3p
,

CA =
sign (m)Ch
Cf (1− p)

√
1− 3p

1− 6x
,

CB =
Ch√
2|m|

√
ε̂(p− 4x+ 6px)

1− 3p

(
1− 3p

1− 6x

) 3
4

,

(2.6)
expressed in terms of a numerical parameter p = p(x)
and the ratio of the cosmological constant Λ to the topo-
logical mass squared m2

x =
Λ

m2
. (2.7)

In the above expression for CB the factor of (1− 3p) was
not simplified in order to maintain the factor inside of
the square root explicitly positive. For completeness the
equations of motion in the Cartan-frame for this metric
parameterization are also solved in Appendix A.

Imposing reality conditions for the solution constants
there are four distinct allowed solutions depending on
the parameter ε̂ = ±1, the range of values for the ratio x
and the respective bounds on the parameter p

I. ε̂ = +1 , x ∈
]
0, 12
]
,

p = − 3x−
√
x(2−3x)

1−6x ∈
]
0, 12
]

II. ε̂ = −1 , x ∈
]
0, 16
[
∪
[
1
2 ,

2
3

]
,

p = − 3x−
√
x(2−3x)

1−6x ∈
]
0, 13
[
∪
[
1
2 ,

2
3

]
III. ε̂ = +1 , x ∈

]
0, 16
[
/
{

1
14

}
,

p = − 3x+
√
x(2−3x)

1−6x ∈ ]−∞, 0[ /{−1}

IV. ε̂ = −1 , x ∈
]
1
6 ,

2
3

]
,

p = − 3x+
√
x(2−3x)

1−6x ∈
[
2
3 ,+∞

[
.

(2.8)
The particular case x = p = 0 corresponds to λ = 0
and allows both for a limiting solution with B̃∗ = 0,
m 6= 0, φ 6= 0 (a non-trivial dilaton field) and the tri-
vial solution with m = Λ = φ = B̃∗ = 0 corresponding to
empty flat Minkowski space-time. We note that the value
of the cosmological constant is constrained by the mass
Λ < m2 (A.34) such that either of the limits Λ → 0 or
m→ 0 are equivalent to the limit x→ 0. In the following
we consider that the particular case x → 0 is retrieved

by taking the limit m→ 0 such that this limiting solution
corresponds to the trivial solution, empty flat Minkowski
space-time. In solution I, the particular case x = 1/6 is
well defined corresponding to the same solutions (2.5)
with p = 1/3 however for solution II this value of the
parameter does not allow for a real solution. Both in so-
lution I and II the parameter value x = p = 1/2 is a well
defined solution with null magnetic field, CB = 0. In
solution II and IV the parameter value x = p = 2/3 is
also a well defined solution. In solution III the particular
case p = −1 corresponding to x = 1/14 (λ = b2/8) does
not allow for solutions of the equations of motion, hence
this value of the parameter is excluded. In solutions III
and IV the value of the parameter x = 1/6 corresponds
to −∞ and +∞, respectively. In addition, for solution IV,
the particular case x = 1/2 corresponding to p = 1 has
the solutions for h, f , B̃∗ and φ given in (2.5) and (2.6),
however it has the particular solution for A

p = 1 ⇒ Ã = CA log(r)+θ , CA =
Ch sign (m)

Cf
. (2.9)

All the solutions presented correspond to positive cos-
mological constant and the solutions I, II with x ∈]0, 1/6[
and III allow for the limiting solution corresponding to
empty flat Minkowski space-time, x → 0, while solu-
tion II with x ∈ [1/2, 2/3] and solution IV do not allow
to obtain this limiting solution. For these solutions, the
line element (2.2), re-written for the standard ADM para-
meterization (1.1), is ds̃2 = −f2dt2+dr2+h2(dϕ+Adt)2

with

f2 =
C2
f r

2p−1

1− r2p−2
(
C̃A rp−1 + θ̃

)2
h2 = C2

h r

(
1− r2p−2

(
C̃A r

p−1 + θ̃
)2)

A = −
Cf r

2p−2
(
C̃A r

p−1 + θ̃
)

Ch

(
1− r2p−2

(
C̃A rp−1 + θ̃

)2)
(2.10)

This metric has determinant
√
−g = |Cf Ch| rp and this

parameterization is obtained directly from the map (2.4)
corresponding to the duality (1.3). The non-null metric
components can be computed directly from this parame-
terization as expressed in equation (2.3)

g̃00 = −C2
f r

2p−1 ,

g̃11 = 1 ,

g̃22 = C2
h r
(

1− r2p−2 (C̃A r
p−1 + θ̃)2

)
,

g̃02 = −Cf Ch r2p−1 (C̃A r
p−1 + θ̃) .

(2.11)

In the above expressions we have replace the constants
CA (2.6) and θ by the respective expressions multiplied
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by the ratio Cf/Ch

θ̃ =
Cf
Ch

θ , C̃A =
Cf
Ch

CA =
sign (m)

(1− p)

√
1− 3p

1− 6x
. (2.12)

We note that for p < 1 the metric has ADM sig-
nature diag(−,+,+) corresponding to the chosen con-
vention while for p > 1 the metric has ADM signature
diag(+,+,−) such that further considering a radial co-
ordinate transformation r → 1/r it is obtained the me-
tric ADM signature diag(+,−,−), hence corresponding
to the opposite convention with respect to the originally
chosen convention. At p = 1 the metric ADM signature
depends on the sign of the factor (1 − (C̃A + θ̃)2), when
this factor is positive it has ADM signature diag(−,+,+)
and when this factor is negative (considering the coor-
dinate transformation r → 1/r) it has ADM signature
diag(+,−,−). We recall that the coordinate transforma-
tion r → 1/r implies exchanging the origin with spatial
infinity r : 0↔ +∞. In addition, when horizons are pre-
sent this swapping of signature is equivalent to swapping
the exterior region with the interior region of the hori-
zons.

For the solutions discussed here, the swapping of the
metric ADM signature with respect to the chosen conven-
tion corresponds to solution IV with the parameter x in
the range x ∈]1/6, 1/2]. Generally, for a given particular
solution changing the metric ADM signature, the duality
corresponding to a double Wick rotation of the coordi-
nates t and ϕ (1.5) could generate new solutions which
would maintain the metric ADM signature. However for
the solutions just computed, when considering the reality
conditions on the fields discussed in appendix 2.1, the du-
ality (1.5) simply swaps the sign of ε̂ and the parameter
p, hence no new solutions are obtained, instead solutions
I and II are swapped with each other and solutions III and
IV are swapped with each other.

2.2 Singularities and curvature analysis

In this section we analyze the space-time singularities,
the existence of horizons and its location.

To analyze space-time singularities in 2+1-dimensions
it is enough to analyze the contraction of the Ricci scalar
Rµν with itself [23]. For the solutions computed in the
previous section this contraction is

RµνR
µν =

1

4r12
[(

3− 16 p+ 34 p2 − 28 p3 + 8 p4
)
r8

+3C̃4
A (p− 1)

4
r8p − 2C̃2

A(p− 1)2×

×(4p− 5)(4p− 3) r4+4p
]
.

(2.13)
For the particular case p = 1 we obtain RµνR

µν =
3/(2r4), hence for p ≥ 1 the dominant divergent term

near r = 0 is proportional to ∼ 1/r4, while for p < 1 it
is proportional to 1/r12−8p such that we conclude that
there is a space-time singularity at r = 0 for all values of
p. In addition, for p > 3/2 corresponding to x < 9/26
in solution IV, spatial infinity is also a space-time singu-
larity as the dominant divergent term is proportional to
∼ r8p−12.

As for the curvature it is

R =
−(1− 6p+ 4p2) r4 + C̃2

A (p− 1)2 r4p

2r6
. (2.14)

For the particular case p = 1 the curvature is R =
1/r2. Consistently with the singularity analysis discussed
above, for p < 3/2 the curvature vanishes at spatial infi-
nity, hence space-time is asymptotically flat, for p = 3/2 it
converges to the positive constant C̃2

A/8 and for p > 3/2
it diverges.

Depending on the values of x the curvature is either
always positive or exist regions where it is negative. For
solution I and II, it is always positive for x ≥ (8−3

√
5)/38,

while for x < (8 − 3
√

5)/38 it is negative for r > r0.I ha-
ving a negative minimum value at r = rmin.I > r0.I and
converging to 0 at spatial-infinity. Near the origin, for
r < r0.I, it is positive. Here r0.I and rmin.I are

r0.I =
(

1− 7x− 3
√
x(2− 3x)

) 1
4(p−1)

⇒ r0.I ∈ ]1,+∞[ ,

rmin.I =

(
3−45x+102x2−(7−22x)

√
x(2−3x)

9−26x

) 1
4(p−1)

⇒ rmin.I ∈ ]3
1
4 ,+∞[ .

(2.15)
For solution III the curvature is negative for r > r0.III ha-
ving a negative minimum value at r = rmin.III > r0.III,
it converges to 0 at spatial-infinity and near the origin,
for r < r0.III, it is positive. As for solution IV, for
x ∈]1/6, 9/26[ (x = 9/26 corresponds to p = 3/2), the
curvature is negative for r < r0.III and it is positive for
r > r0.III diverging at spatial infinity, for x = 9/26 the
curvature is negative for r < 2/

√
13 and it is positive

for r > 2/
√

13 converging to 13/8 at spatial infinity, for
x ∈]9/26, (8 + 3

√
5)/38[ it is negative near the origin for

r < r0.III and it is positive for r > r0.III converging to
0 at spatial infinity and it has a positive maximum value
at r = rmin.III > r0.III, while for x ∈ [(8 + 3

√
5)/38, 2/3[

the curvature is always positive converging to 0 at spatial
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infinity. Here r0.III and rmin.III are

r0.III =
(

1− 7x+ 3
√
x(2− 3x)

) 1
4(p−1)

⇒

{
r0.III ∈ ]0.93, 1[ for x ∈ ]0, 16 [

r0.III ∈ ]0, 1.01[ for x ∈ ] 16 ,
2
3 [

rmin.III =

(
3−45x+102x2+(7−22x)

√
x(2−3x)

9−26x

) 1
4(p−1)

⇒

{
rmin.III ∈ ]1, 3

1
4 [ for x ∈ ]0, 16 [

rmin.III ∈ ]0, 1[ for x ∈ ] 9
26 ,

8+3
√
5

38 [

(2.16)
Hence, resuming the previous analysis, the curvature

values for the several allowed solutions are, for the seve-
ral solutions discussed,

I. ε̂ = +1,

x ∈
]
0, 8−3

√
5

38

[
,

⇒ R ∈ ]R(rmin.I) < 0,+∞[

x ∈
[
8−3
√
5

38 , 12

]
,

⇒ R ∈ ]0,+∞[

II. ε̂ = −1 ,

x ∈
]
0, 8−3

√
5

38

[
,

⇒ R ∈ ]R(rmin.I) < 0,+∞[

x ∈
[
8−3
√
5

38 , 16

[
∪
[
1
2 ,

2
3

]
,

⇒ R ∈ ]0,+∞[

III. ε̂ = +1 ,

x ∈
]
0, 16
[
/
{

1
14

}
,

⇒ R ∈ ]R(rmin.III) < 0,+∞[

IV. ε̂ = −1 ,

x ∈
]
1
6 ,

9
26

[
,

⇒ R ∈ ]−∞,+∞[

x = 9
26 ,

⇒ R ∈
]
−∞, 138

[
x ∈

]
9
26 ,

8+3
√
5

38

[
,

⇒ R ∈ ]−∞, R(rmin.III) > 0[

x ∈
[
8+3
√
5

38 , 23

]
,

⇒ R ∈ ]0,+∞[

(2.17)

As for the nature of the space-time singularity we note
that, independently of the value of the parameter p, the
maximum value of the coordinate ϕ diverges at the singu-
larity r = 0 and it is finite up to spatial infinity being real
outside the horizon (2.28) discussed in the next section.
At spatial infinity it diverges for p ≤ −1/4 and p > 3/2
and it is asymptotically null for p ∈ [1, 3/2[ (being finite at
p = 3/2). As for the range of the parameter p ∈]− 1/4, 1[
there is a specific frame for which the maximum value of
the coordinate ϕ matches the usual relations correspon-
ding to flat Minkowski space-time. Specifically, defining
the 2-dimensional intrinsic metric h̃ij = diag(1, h2) cor-
responding to metric g̃µν (2.11) and considering a resca-
ling of the radial coordinate

r = r̃ξ ⇒ dr = ξ r̃ξ−1 dr̃ , (2.18)

we obtain that the maximum value for the coordinate ϕ
is

ϕmax =
2π√
−|gµν |

√
hϕϕ
hrr

=
2π

f
√
hrr

=
2πr̃1−ξ(2p+1/2)

|ξ Cf |
×

×
√

1− r̃2ξ(p−1)
(
C̃Ar̃ξ(p−1) + θ̃

)2
.

(2.19)
such that the following asymptotic expressions at spatial
infinity are obtained√

−|g̃µν | = |ξ CfCh| r̃−1+ξ(1+2p) ,

lim
r→∞

√
|hij | = |ξ Ch| r̃−1+

3
2 ξ ,

lim
r→∞

ϕmax =
2π

|ξ Cf |
r̃1−

ξ(1+4p)
2 .

(2.20)

Setting ξ = 2/(1 + 4p), ϕmax is asymptotically constant
exactly matching 2π for Cf = (1 + 4p)/2. In addition we
note that at spatial infinity both the space-time measure√
−|gµν | and the space measure

√
|hij | are, in this frame

proportional to a positive exponent of r̃. Let us further
note that the constant Cf is interpreted as the velocity of
light in vacuum and its value can be redefined by a re-
scaling of the time coordinate t, hence there is some loss
of generality when fixing the constant Cf = (1+4p)/2 (to
ensure that limr̃→+∞ ϕ = 2π) as we are fixing the speed
of light in a particular frame, hence we are generally lea-
ving Cf as a free constant. Resuming this discussion we
conclude that the coordinate ϕ can exactly match the an-
gular coordinate for Minkowski empty flat space-time at
spatial infinity for a particular frame only when

p ∈
]
−1

4
,

1

2

[
/{0} , (2.21)
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2 MAGNETIC SOLUTIONS FOR MINKOWSKI SPACE-TIME

When considering this constraint the range of the pa-
rameter x for solution I is not affected, for solution II
is reduced to x ∈]0, 1/6[, for solution III is reduced to
x ∈]0, 1/62[ and solution IV is excluded. We further note
that for this range only the space-time singularity at the
origin exists (2.22) as p < 3/2 such that no singularity at
spatial infinity is present.

For all values of p, ϕmax diverges at the singularity
r = 0 and, for p > 3/2, ϕmax is null at the singularity
r → +∞, hence we interpreted these singularities as a
decompactification singularity and a conical singularity,
respectively [23]

∀p , lim
r→0

ϕmax = +∞ ⇒
r = 0 is a decompactification singularity .

p >
3

2
, lim
r→+∞

ϕmax = 0 ⇒
r → +∞ is a conical singularity .

(2.22)

Next we analyze the horizons for an external observer.

2.3 Horizons and photon topological mass

To analyze the existence of horizons the usual approach
is to compute the geodesic motion of photons. From the
point of view of an external observer the horizon corres-
ponds to the spatial hyper-surface for which the photon
freezes such that its geodesic equation is ṙ = 0. In [23]
were computed the differential equations describing geo-
desic motion. For a particle with null angular momentum
L = 0 we obtain

ṙκ = ±
√
−g(−g κ

E2 +g22)
g22

= ±
|Cf |rp−

1
2

√
1+ κ

E2 C
2
f r

2p−1− r2p−2 (C̃A rp−1+θ̃)2

1−r2p−2 (C̃A rp−1+θ̃)2
,

ϕ̇κ = − g02

g22
= −CfCh ×

r2p−2(C̃A r
p−1+θ̃)

1− r2p−2(C̃A rp−1+θ̃)2
,

(2.23)
where g = |gµν | is the determinant of the metric, E the
energy of the particle and κ = −1 for standard massive
particles (corresponding to time-like trajectories), κ = 0
for photons or any other massless particles (correspon-
ding to light-like trajectories) and κ = +1 for tachyons or
other particles with imaginary energy eigenvalues (cor-
responding to space-like trajectories).

Generally the above equations are not solvable analy-
tically. In the following we will analyze the zeros and
divergences of the first equation for particles traveling
towards the singularities which is enough to conclude
whether a horizon exist or not. We further note that
due to the Chern-Simons term the photon acquires a to-
pological mass m such that its energy squared is E2 =
m2 [35]. Specifically from the equation of motion for
Aµ we obtain [23] ∂α(

√
−g ecφFαµ) + mεµαβFαβ/2 =

0 such that computing the divergence of this equa-
tion, replacing itself in the resulting differential equa-
tion and using the definition of the dual field strength
∗Fµ = −

√
−g ecφεµαβFαβ/(2

√
−g ecφ) we obtain the

photon propagation equation in dual form [35](
�−m2

)
∗ Fµ = 0 ,

�(·) =
1√
−g ecφ

∂α
(√
−g ecφ∂α (·)

)
,

(2.24)
where � stands for the 2 + 1-dimensional Laplace ope-
rator for action (2.1) and the relative signs in this equa-
tion do depend on the metric signature convention. In
particular we note that in flat space-time, for the conven-
tion adopted here, ηµν ∼ diag(−,+,+) we consistently
obtain (−∂0∂0 + ∂i∂

i −m2) ∗ Fµ = 0 while for the oppo-
site sign convention [35] ηµν ∼ diag(+,−,−) we obtain
(� + m2) ∗ Fµ = (∂0∂

0 − ∂i∂i + m2) ∗ Fµ = 0 such that
both equations are the same up to an overall minus sign,
corresponding to a photon with a standard (topological)
mass m. Hence as extensively analyzed in the literature
we conclude that no massless photons exist for Maxwell
Chern-Simons theories [34, 35].

It is straight forward to check that for all values of p
and κ, as we approach the singularity at r = 0, the velo-
city of any given particle vanishes

lim
r→0

ṙκ = 0 , (2.25)

while in this limit ϕ̇κ is finite for p = 1 and null for all
other values of p. This implies that the singularity is itself
an horizon, hence it is not a naked singularity. Howe-
ver this result is not conclusive as for higher values of
r > 0 there exists a divergence of ṙκ, specifically when
the denominator of the first equation of (2.23) is null the
particle velocity diverges. This divergence is located at
the value of the radial coordinate r = rdiv obeying the
equation

1 =
(
rp−1div (C̃A r

p−1
div + θ̃)

)2
. (2.26)

This equation has one real positive solution rdiv for all
values of p and θ̃. We recall that C̃A is not a free cons-
tant being expressed in equation (2.6) and (2.12) as a
function of x and p = p(x). Specifically, one of the 4 so-
lution rdiv,±,± = ((−θ̃ ±

√
θ̃2 ± 4C̃A)/(2C̃A))

1
p−1 , is real

and positive for all the allowed range of the parameters.
In addition to ensure that for r > rdiv, the space-

time has Minkowski signature diag(−,+,+) and that ṙκ
describes the geodesic motion of a particle it is requi-
red that this quantity (ṙκ) be real valued and consisten-
tly have either positive sign for particles traveling away
from the singularity either negative sign for particles
traveling towards the singularity. These properties are

obeyed as long as the factor 1 −
(
rp−1 (C̃A r

p−1 + θ̃)
)2

is real and positive for r > rdiv. This statement is sim-
ply equivalent to the bound p < 1 such that the factor
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2 MAGNETIC SOLUTIONS FOR MINKOWSKI SPACE-TIME

(
rp−1 (C̃A r

p−1 + θ̃)
)2

decreases with growing radial co-
ordinate. Hence we obtain the bounds{

r > rdiv

1 >
(
rp−1 (C̃A r

p−1 + θ̃)
)2 ⇔ p < 1 . (2.27)

This bound, p < 1, is consistent with the analysis in the
previous section.

For massless particles the velocity divergence in ṙκ=0

just analyzed is outside any horizon. This is straight
forwardly shown by noting that for κ = 0 the numera-
tor of ṙκ=0 is the square root of its denominator (2.23)
such that the only horizon is at r = 0 as already con-
cluded (2.25). Classically there is no interpretation for a
particle velocity divergence, however we note that upon
path integral quantization this phenomena can be consis-
tently described as a tunneling effect, hence an instan-
ton configuration [26]. We are not proceeding with this
analysis here, instead let us note that from the photon
equations of motion (2.24) the photon acquires a topo-
logical mass m such that no massless photons exist in
the theory discussed here. Therefore, assuming that no
massless particles exist in the theory let us analyze the
photon geodesic motion with energy squared given by
E2 = m2 and light-like trajectories (κ = −1). For this
case we conclude that an horizon at the value of the
radial coordinate for which the numerator of ṙκ=−1 is
null. Furthermore we note that, due to the denomina-
tor of ṙκ=−1 being positive for r > rdiv and the term
κC2

f/E
2r2p−1 = −C2

f r
2p−1/m2 < 0 being negative for

all values of r, the value of the radial coordinate corres-
ponding to the horizon r = rH is greater than rdiv (2.26) p < 1

1 =
(
rp−1H (C̃A r

p−1
H + θ̃)

)2
+
C2
f

m2
r2p−1H

⇔ rH > rdiv .

(2.28)
Although the author failed to find a analytical solution for
this equation the previous discussion is enough to con-
clude that for all allowed solutions and parameter ranges
with p < 1 there exists an horizon for the value of the
radial coordinate rH given by this equation. Hence both
the space-time singularity at r = 0 and the singularity in
the particle velocity at r = rdiv are inside the horizon and
are not observable by an external observer. This is a valid
statement both for photons (which are massive due to the
Chern-Simons term) and for any other massive particles.

As for the particular case of solution IV with p > 1 we
note that (further considering the redefinition r → 1/r)
the ADM signature of the metric for r > rH (2.28) is
diag(+,−,−), hence with the opposite sign of the ori-
ginal convention. Recalling that at the horizon the me-
tric changes sign [51], this is simply interpreted as that
the interior of the horizon for p > 1 corresponds to the

region with r > rH , hence for an external observer in
the region r ∈]0, rH [ these solutions are interpreted as a
dressed point-like singularity at r = 0 and an horizon at
r = rH such that rdiv > rH and the singularity at r = +∞
are within the region contained by the horizon (r > rH).

Next we compute the mass, the magnetic flux and the
angular momentum for the classical solutions obtained.

2.4 Mass, Angular Momentum and Magne-
tic Flux

In this section we derive and analyze the expressions for
the mass, angular momentum and magnetic flux for the
solutions computed (2.8). We postpone a interpretation
of these results until the next section 3 where all the pos-
sible cases are gathered in table 1 and the results obtai-
ned are discussed.

We recall that there are several definitions of mass,
namely in [23] it was computed the ADM mass [51, 52,
59]. Adopting this definition of mass, for the metric pa-
rameterization (1.1), it is obtained

MADM = 2h′ + 4λhφφ′ + 2ε̂he−bφ/2AϕA
′
ϕ

∣∣∣r→∞
r→δM

,

(2.29)
where δM is a cut-off near the singularity (of order of the
Planck Length) introduced to regularize the singularity
at the origin maintaining the mass value finite. Howe-
ver for the magnetic solutions (2.5) the value of the ADM
mass is generally complex. We note that the ADM mass
corresponds to the (classical) eigenvalue of the Hamilto-
nian constraint, hence, generally, aiming at the quantiza-
tion of the gravitational sector of the theory. This is not
the aiming of the present discussion. Instead of the ADM
definition of mass we are taking a classical definition of
mass that allows for real values to the solutions (2.5).
The standard General Relativity definition of mass is the
integral of the gravitational mass-energy density ρg. For
a generic Einstein Tensor Gµν the mass-energy density ρg
and pressure pg are [51]

ρg = G00 − pg(1− g00) , pg = −G03

g03
, (2.30)

such that the total mass and angular momentum are
obtained by integrating these quantities over a spatial
hyper-surface [51]

M =

∫ √
|hij | ρg dx2 ,

Sz =

∫ √
|hij | r pg g03 dx2 ,

(2.31)

where |hij | stands for the determinant of the induced 2-
dimensional spatial metric discussed in the previous sec-
tion and we note that in 2 + 1-dimensions the only an-
gular momentum component correspond to the 3 + 1-
dimensional angular momentum along z (from the de-
finition Sk =

∫
εkijx

iT 0j [51] it is obtained that Sr =
Sϕ = 0).
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2 MAGNETIC SOLUTIONS FOR MINKOWSKI SPACE-TIME

For the action (2.1) there is also a contribution to the
classical gravitational mass due to the dilaton-like scalar
field φ. This contribution can be read directly from the
Einstein Equations [23]

Gµν +λ∂µφ∂νφ−
λ

2
gµν∂αφ∂

αφ+
1

2
ebφgµνΛ = 2e−

b
2φTµν ,

(2.32)
where we have taken in consideration the ansatz a = 0,
c = −b/2 and the bare electro-magnetic stress-energy
tensor is Tµν = ε̂

(
FµαF

α
µ − gµνF 2/4

)
. Hence we note

that, for a classical configuration obeying these equati-
ons, the Einstein tensor contribution plus the scalar field
contribution to the gravitational mass-energy density and
pressure matches the respective electromagnetic quanti-
ties [51]

ρgrav = ρg + ρφ = ρEM ,

pgrav = pg + pφ = pEM .

(2.33)

In the following we employ these definitions of gravi-
tational energy-momentum density and pressure density
to compute the respective total quantities. Noting that
the only non-null component of the Maxwell tensor is
Frϕ = F12 = B̃∗ (2.5) it is straight forward to obtain
the expressions for these quantities

ρgrav = ρEM = − ε̂
2
g00g

11g22B̃2
∗ e
− b2φ − pEM (1− g00)

= − ε̂ C
2
B Cφ

2C2
h

r2p−4 ,

pgrav = pEM =
ε̂

2
g11g22B̃2

∗ e
− b2φ

=
ε̂C2

B Cφ
2C2

h

r2p−4 .

(2.34)
These quantities are real valued for all the range of the
parameter p and in the limit p → 0 are consistently null,
as already discussed the particular solution correspon-
ding to p = 0 corresponds to Minkowski flat empty space-
time. We also note that the equation of state for these
solutions is a constant ωgrav = ρgrav/pgrav = −1. Howe-
ver, depending on the value of the parameter p they may
have either a divergence at the origin r → 0 (IR), either
a divergence at spatial infinity r → +∞ (UV) or both.

To regularize these divergences and allow for a sim-
pler analysis of the total quantities we consider two cut-
offs δIR (lower cut-off) and δUV (upper cut-off) which
can be taken to 0 and +∞, respectively. Specifically for
the mass M we obtain the following integral expression

M =

∫ δUV

δIR

dr

∫ ϕmax

0

dϕ
√
|hij | ρgrav

= − ε̂C
2
BCφπ

|CfCh|

∫ δUV

δIR

dr rp−3×(
1− r2p−2(C̃A r

p−1 + θ̃)2
)
,

(2.35)

and for the angular momentum Sz

Sz =

∫ δUV

δIR

dr

∫ ϕmax

0

dϕ
√
|hij | r pgrav g02

= − ε̂C
2
BCφπ

(CfCh)2

∫ δUV

δIR

dr rp−3
(
C̃A r

p−1 + θ̃
)
×

×
(

1− r2p−2(C̃A r
p−1 + θ̃)2

)
.

(2.36)
We note that these quantities are evaluated in a 2-
dimensional spatial hyper-plane, hence M has units
of mass over length and Sz of mass such that when
embedded into a 3-dimensional spatial manifold it is
further required to integrated over the thickness of the
2-dimensional embedding along the orthogonal direction
(z) to retrieve the standard 3-dimensional quantities with
units of mass and angular momentum, respectively. It
is relevant to stress that, as discussed in [50], from a
3 + 1-dimensional perspective these computations are va-
lid and consistent only for systems with constant fields
along the direction orthogonal to the planar system as
it is the case of systems with cylindrical symmetry (for
further discussions on embedded 2 + 1-dimensional sys-
tems see for example [14] and [63]).

Evaluating the integral expression (2.35) for the Mass
M we obtain

p 6= −1, 1,
6

5
,

4

3
,

5

4
, 2

M = − ε̂C
2
BCφπ

|CfCh|

(
C̃2
A

6− 5p
r5p−6 +

2C̃Aθ̃

5− 4p
r4p−5

+
θ̃2

4− 3p
r3p−4 +

1

p− 2
rp−2

)δUV
δIR

.

(2.37)
For p = −1 there are no allowed solution and the spe-
cific expressions for p = 1, 6/5, 4/3, 5/4, 2 are listed in
appendix B in equations (B.1–B.5). By direct inspection
of the expressions for the mass it is straight forward to
conclude that the divergence at the origin r → 0 is pre-
sent for p ≤ 2 and that the divergence at spatial infinity
r → +∞ is present for p ≥ 6/5. Hence, depending on the
value of the parameter p, finite mass expressions M can
be evaluated by considering the following limits on δIR
and δUV

p ∈
]
−∞, 6

5

[
/ {−1, 0} ⇒

{
δIR 6→ 0
δUV → +∞

p ∈
[

6

5
, 2

]
⇒

{
δIR 6→ 0
δUV 6→ +∞

p ∈ ]2,+∞] ⇒
{

δIR → 0
δUV 6→ +∞

(2.38)

Scripta-Ingenia, Winter Solstice, December 21, 2018. (ISSN: 2183-6000)
m http://cdrsp.ipleiria.pt T (351) 244-569441 B scripta.ingenia@ipleiria.pt Page 10

http://cdrsp.ipleiria.pt
mailto:scripta.ingenia@ipleiria.pt


2 MAGNETIC SOLUTIONS FOR MINKOWSKI SPACE-TIME

The first range for the parameter p corresponds to solu-
tions I, II, III and IV with p ∈]2/3, 6/5[ (2.8) while the
second and third ranges correspond to solution IV.

As for the sign of the mass, for the range p ∈] −
∞, 1]/{−1, 0} it has the opposite sign of ε̂, M ∼ −ε̂
and for the range p ∈]1,+∞[ it has the same sign of ε̂,
M ∼ ε̂. We note that a negative mass is not unexpec-
ted since we are allowing for a gauge ghost sector, we
recall that ε̂ = +1 corresponds to a ghost gauge sector
and that ε̂ = −1 corresponds to a standard gauge sector.
For the range p ∈] −∞, 1[, outside the horizon ρgrav has
the opposite sign of ε̂ in accordance to whether the gauge
sector is a ghost or a standard sector, however the pre-
dominant contribution to the value of the mass is within
the horizon and the integrand in (2.35) changes sign at
the horizon such that the total mass is actually positive
when it is considered a ghost gauge sector and it is ne-
gative when a standard ghost gauge sector is considered.
in the range p ∈]1,+∞[ the opposite behavior is verified
such that the total mass is negative when it is considered
a ghost gauge sector and it is positive when a standard
ghost gauge sector is considered. This is simply explai-
ned as due to the contribution of the scalar field to the
total mass, its classical energy opposes the contribution
from the standard gravitational sector.

Evaluating the integral expression (2.36) for the an-
gular momentum Sz we obtain

p 6= −1, 1,
7

6
,

6

5
,

5

4
,

4

3
,

3

2
, 2

Sz = − ε̂C
2
BCφπ

(CfCh)2

(
C̃3
A

7− 6p
r6p−7 +

3C̃2
Aθ̃

6− 5p
r5p−6

+
3C̃Aθ̃

2

5− 4p
r4p−5 +

θ̃3

4− 3p
r3p−4

+
C̃A

3− 2p
r2p−3 +

θ̃

p− 2
rp−2

)δUV
δIR

.

(2.39)
The specific expressions for p = −1, 7/6, 6/5, 5/4, 4/3, 3/2, 2
are listed in appendix B in equations (B.6–B.12). By di-
rect inspection of the expressions for the angular momen-
tum it is straight forward to conclude that the divergence
at the origin is present for p ≤ 2 and that the diver-
gence at spatial infinity is present for p ≥ 7/6. Hence,
depending on the value of the parameter p, finite angular
momentum expressions Sz can be evaluated by conside-

ring the following limits on δIR and δUV

p ∈
]
−∞, 7

6

[
/ {−1, 0} ⇒

{
δIR 6→ 0
δUV → +∞

p ∈
[

7

6
, 2

]
⇒

{
δIR 6→ 0
δUV 6→ +∞

p ∈ ]2,+∞] ⇒
{

δIR → 0
δUV 6→ +∞

(2.40)
Similarly to the results obtained for the mass, the first
range for the parameter p corresponds to solutions I, II,
III and IV with p ∈]2/3, 7/6[ (2.8) while the second and
third ranges correspond to solution IV.

As for the sign of the angular momentum Sz we ob-
tain that in the range p ∈] − ∞, 1[/{−1, 0} it is Sz ∼
+ε̂ sign (C̃A) which correspond to solution III in the range
p ∈]−∞, 0[/{−1}, solution I and II in the range p ∈]0, 2/3[
and solution IV in the range p ∈]2/3, 1[. For all these ca-
ses C̃A ∼ sign (m) such that the sign of the angular mo-
mentum is Sz ∼ +ε̂ sign (m). For p = 1 we obtain that
Sz ∼ −ε̂ sign (m). In the range p ∈]1, 1.2857[ with θ̃ 6= 0 it
is Sz ∼ −ε̂ sign (θ̃) corresponding to the solution IV. When
θ̃ = 0, in the range p ∈]1, 5/4[ it is Sz ∼ −ε̂ sign (C̃A) for
which C̃A ∼ − sign (m) such that Sz ∼ +ε̂ sign (m), for
p = 5/4 it is Sz ∼ −ε̂ sign (C̃A(1 − C̃2

A)) for which C̃A =
−
√

31 sign (m) such that C̃A(1 − C̃2
A) = 30

√
31 sign (m),

hence Sz ∼ −ε̂ sign (m) and in the range p ∈]5/4, 1.2857[
it is Sz ∼ +ε̂ sign (C̃A) for which C̃A = − sign (m) such
that Sz ∼ −ε̂ sign (m). In the range p ∈ [1.2857,+∞[ it
is Sz ∼ +ε̂ sign (C̃A) corresponding to solution IV with
C̃A ∼ − sign (m), hence we obtain Sz ∼ −ε̂ sign (m).

As for the magnetic flux we note that for action (2.1)
the equations of motion are expressed in terms of the
covariant electro-magnetic fields B =

√
−gecφB̃∗ and

E =
√
−gecφẼ∗ instead of the bare electro-magnetic fi-

elds B̃∗ and Ẽ∗ [51] and that for stationary solutions
(not depending explicitly on the time coordinate) the Bi-
anchi identities for the Maxwell tensor can also be re-
expressed with respect to these quantities. Hence the
Maxwell equations are defined by the covariant fields B
and E such that the measurable magnetic field is B and
its integral over the 2-dimensional manifold is

ΦB =

∫ δUV

δIR

dr

∫ ϕmax

0

dϕ
√
|hij |
√
−gecφB̃∗

= 2CBCφC
2
hπ

∫ +∞

δM

dr rp×(
1− r2p−2

(
C̃A r

p−1 + θ̃
))

.

(2.41)
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Evaluating this integral expression we obtain

p 6= −1, 1,
1

3
,

3

5
,

ΦB = 2CBCφC
2
hπ

(
1

1 + p
rp+1 +

θ̃2

1− 3p
r3p−1

+
θ̃C̃A

1− 2p
r4p−2 +

C̃2
A

3− 5p
r5p−3

)δUV
δIR

.

(2.42)
The expressions for the particular values of p =
1, 1/3, 3/5 are listed in appendix B in equations (B.13–
B.15). Again, depending on the value of the parameter p,
finite magnetic flux expressions ΦB can be evaluated by
considering the following limits on δIR and δUV

p ∈ ]−∞,−1[ ⇒
{

δIR 6→ 0
δUV → +∞

p ∈
]
−1,

3

5

]
/{0} ⇒

{
δIR 6→ 0
δUV 6→ +∞

p ∈
]

3

5
,+∞

[
⇒

{
δIR → 0
δUV 6→ +∞

(2.43)
The first range for the parameter p corresponds to solu-
tion III, the second range to solution I, solution II with
p ∈]0, 1/3[∪[1/2, 3/5] and solution III with p ∈] − 1, 0[
while the third range corresponds to solution II with
p ∈]3/5, 2/3] and solution IV (2.8).

As for the sign of the magnetic flux ΦB let us note that
the sign of Cφ and CB are independent of the specific va-
lue of the parameter p. Cφ is always positive, however
from the classical solutions of the equations of motion the
sign of CB is arbitrary, this is simply understood by noting
that, in the absence of a electric field the Einstein equati-
ons (A.10–A.13) only depend on the square of the magne-
tic field and that the Maxwell equations (A.8) and (A.9)
with null electric field Ẽ = 0 are invariant under a change
of sign of the magnetic field B̃ → −B̃. Hence only so-
lutions with both non-null electric and magnetic fields
are actually sensitive to the relative electromagnetic fi-
elds direction (hence the polarization of the electromag-
netic fields), both through the Maxwell equations and the
’02’ Einstein equation. For the specific expressions of the
constants given in (2.6) the choice of the magnetic fi-
eld sign can be selected by choosing the sign of the free
constant Ch which has no consequences at classical level,
hence we will proceed our analysis leaving the sign of
CB unspecified. In the range p ∈] − ∞, 1/3[ the mag-
netic flux sign is ΦB ∼ − sign (CB), for p = 1/3 it is
ΦB ∼ sign (CB(1 − C̃A)) corresponding to solution I for
which C̃A =

√
3/2 such that ΦB ∼ + sign (CB), in the

range p ∈]1/3, 1[ it is ΦB ∼ + sign (CB) and in the range
p ∈ [1,+∞[ it is ΦB ∼ − sign (CB).

Next we gather all the results obtained for the solu-
tions (2.5) and discuss possible interpretations for these
configurations.

3 Discussion of results

3.1 Summary of results

In this work, based on the space-time duality (1.3) dis-
cussed in a previous publication [50] and resumed in the
introduction we have computed the classical solutions
listed in equations (2.5-2.8) for the gravitational fields,
a scalar field and the gauge fields of Einstein Maxwell
Chern-Simons theory described by action (2.1) with a
non-trivial magnetic field and null electric field. We have
analyzed the space-time singularities of such classical
configurations and the curvature values in section 2.1;
the existence of horizons taking in consideration that no
massless photons exist in this theory due to the topologi-
cal mass for the photon in section 2.3, concluding that a
geodesic divergence is present in the interior of the hori-
zon, hence not observable by an external observer; and
in section 2.4 were derived the mass, angular momentum
and magnetic flux for such configurations. We summarize
all these results in table 1 as a function of the parameter
p ∈]−∞,+∞[/{−1}.

In the first column of table 1 are listed the several ran-
ges for the value of the parameter p, in the column labe-
led limr→+∞ ϕmax are listed the asymptotic finite values
at spatial infinity of the maximum value for the coordi-
nate ϕ which simultaneously allow the space-time mea-
sure and space measure to have as the asymptotic leading
term (also at spatial infinity) a positive exponent of the
radial coordinate, in the columns labeledMdiv, Sz,div and
ΦB,div is listed whether the mass is divergent near the ori-
gin (IR divergence) or the mass is divergent at spatial in-
finity (UV divergence) in accordance to the results obtai-
ned in equations (2.38), (2.40) and (2.43), respectively,
in the columns labeled sign (M), sign (Sz) and sign (ΦB)
are listed the sign for these quantities evaluated from the
respective expressions (2.37), (2.39) and (2.42) as well
as the particular cases listed in appendix B, in the column
labeled limr→+∞R are listed the asymptotic values of the
curvature at spatial infinity obtained by inspection of the
curvature (2.14) and summarized in (2.17), in the co-
lumn labeled "Singularities"are listed the location of the
space-time singularities obtained by inspection of the sca-
lar invariant RµνRµν (2.13) and summarized in (2.22),
in the column labeled "Horizons"it is listed whether the
horizon at r = 0 and r = rH (2.28) exists according
to the discussion in section 2.3, in the column labeled
"Signature"are listed the ADM signatures for the metric
for values of the radial coordinate above the horizon
r > rH (2.28) obtained from inspection of the mapped
gravitational fields f , h and A given in (2.10) correspon-
ding to the standard ADM metric parameterization (1.1)
and finally in the last column labeled "Solution"are listed
the correspondence to the solutions of type I, II, III and
IV summarized in equation (2.8) for each of the ranges
for the values of the parameter p.
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3.2 Conclusions

Given the solutions summarized in table 1 we proceed
to interpret them physically. Of particular relevance are
the divergences of the physical properties of the classical
configurations, namely the total mass M , the total an-
gular momentum Jz and the total magnetic flux ΦB. A
divergence near the space-time singularity (or singulari-
ties) is non uncommon in 2 + 1-dimensional space-times,
this is mainly due to that a gravitational potential pro-
portional to ∼ 1/r only in 3 + 1-dimensional space-times
corresponds to a finite gravitational mass. Also we note
that such a divergence near the singularity is usually as-
sociated with a breakdown of the theory such that a more
complete theory is required. A simple regularization for
the divergent quantities is to consider a lower cut-off δIR
of the order of the Planck length near the singularity as
was considered in [23].

As for configurations for which the total mass M ,
the total angular momentum Jz and the total magnetic
flux ΦB are divergence when the integral of the respec-
tive densities is considered up to spatial infinity, let us
note that considering a upper cut-off δUV for large va-
lues of the radial coordinate r is simply interpreted as
a description of a finite size system such that the cut-
off δUV is interpreted as the maximum size of the sys-
tem. Otherwise, for infinite size systems, it is not man-
datory that these quantities be finite, instead they may
be interpreted as cosmological-like solutions for 2 + 1-
dimensional space-times as long as the respective densi-
ties are finite away from the singularity at the origin. Let
us note that even for a uniformly distributed (meaning
constant) mass-energy density in flat Minkowski space-
time we would obtain a divergent total mass when inte-
grating over all space up to spatial infinity.

Hence for the classical configurations discussed here,
to regularize the divergence at the origin for M , Sz or ΦB
we consider the lower cut-off δIR to be of the order of the
Planck length lp. To interpret the divergence and the res-
pective upper cut-off δUV for large r let us consider three
possible cases:

• string-like configurations: a 2+1-dimensional point-
like effective description of matter centered at the
origin generating a magnetic field of finite flux.
When embedded into a 3 + 1-dimensional space-
time with cylindrical symmetry is interpreted as a
magnetic string configuration. These configurati-
ons should also have a finite mass and finite angu-
lar momentum such that the upper cut-off δUV is
not required;

• configurations driven by an external magnetic field:
the upper cut-off δUV is justified by the finite range
of the applied external field. Hence, from the point
of view of 3 + 1-dimensions the magnetic field has
cylindrical symmetric and is applied orthogonally
to the planar system in the region r < δUV ;

• cosmological-like solutions: an infinite configuration
with background magnetic fields such that are al-
lowed total infinite magnetic flux, infinite mass and
angular momentum as long as the respective den-
sities are (locally) finite everywhere except at the
space-time singularities.

By inspection of the table 1 we conclude that, consi-
dering only the cut-off δIR the solutions with a magnetic
field generating a finite total flux, hence being interpre-
ted as a magnetic string-like configuration in an infinite
space-time are achievable only for the parameter range
p ∈] − ∞,−1[ corresponding to solution III describing
ghost gauge fields. For these configurations also the to-
tal mass and total angular momentum are finite. We re-
mark that due to the particular value of the parameter
p = −1 not allowing for a solution of the equations of
motion, this configurations cannot be obtained from flat
Minkowski space-time by continuously changing the pa-
rameter p.

As for the range p ∈] − 1, 1[ (considering the lower
cut-off δIR), M and Jz are finite. However, although the
magnetic field B is finite, the total magnetic flux ΦB is di-
vergent when integrating the magnetic field up to spatial
infinity, hence these solutions can be interpreted either
as driven by a cylindrical external magnetic field ortho-
gonal to the planar system ranging from the origin up to
the upper cut-off r < δUV , either as a cosmological-like
solution. In addition we note that, when considering an
external magnetic field, the value of the field B is null for
p = 0 and p = 1/2. Hence the solutions corresponding to
these values of the parameters are interpreted as two pos-
sible backgrounds upon which the external magnetic field
is applied to. Specifically p = 0 corresponds to empty flat
Minkowski, such that when the magnetic field is turn on
the solutions can be changed smoothly and continuously
by varying the parameter p (the variation of the field so-
lutions with the parameter p are continuous and their de-
rivatives with respect to p are also continuous) describing
the deformation induced by the magnetic field, in the
range p ∈] − 1/4, 0[ corresponding to solution III (2.8)
for ghost gauge fields, in the range p ∈]0, 1/2[ also for
ghost gauge fields corresponding to solution I and in the
range p ∈]0, 1/3[ for standard gauge fields corresponding
to solution II. For p = 1/2 the background corresponds
to a neutral dilatonic-like background and the solutions
can be changed smoothly and continuously by varying
the parameter p in the range p ∈]0, 1/2[ describing ghost
gauge fields corresponding to solution I and in the range
p ∈]1/2, 2/3] describing standard gauge fields correspon-
ding to solution II. In the range p ∈ [2/3, 1[ corresponding
to solution IV describing standard gauge fields the solu-
tions can also be changed smoothly and continuously by
varying the parameter p, however when crossing the va-
lue p = 2/3 the derivative of the field solutions is not
continuous such that this range cannot be obtained smo-
othly by varying the value of the parameter p starting at
any of the neutral backgrounds p = 0 or p = 1/2.
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For values of the parameter p ∈ [1, 3/2] correspon-
ding to solution IV describing standard gauge fields the
metric ADM signature for values of the radial coordinate
above the value of the radial coordinate of the horizon,
r > rH , is the opposite to our original convention, while
for the range r ∈]0, rH [ the metric has the ADM signa-
ture diag(−,+,+) corresponding to the original conven-
tion. The interpretation for an external observer is that
observable space-time is between r = 0 and the coordi-
nate horizon r = rH (2.28) such that r = 0 is a dressed
singularity (r = 0 is both a singularity and an horizon)
and a cosmological horizon exists at r = rH . In addi-
tion we note that the geodesics divergence analyzed in
section 2.3 located at r = rdiv (2.26), is now beyond the
cosmological horizon, specifically for p > 1 we obtain
that rH < rdiv. These configurations may be interpreted

as cosmological-like configurations in 2+1-dimensions as
the mass-energy density, the magnetic field and pressure
are finite in between horizons.

As for the range p ∈]3/2,+∞[ we obtain an exotic
configuration for which space-time has two singularities
at r = 0 and r = +∞. In particular for the range
p ∈]2,+∞[, M , Sz and ΦB have no divergence at the
origin having only a divergence at spatial infinity. Hence
by considering the map r̂ = 1/r we obtain, for our metric
ADM signature convention, a magnetic string-like confi-
guration for standard gauge fields with both a singularity
at the origin within the horizon at r̂H > r̂div and a dres-
sed singularity at spatial infinity (spatial infinity is itself
both a singularity and an horizon).

We resume the main configuration types discussed in
table 2.

configuration type p solution

string-like ∈ ]−∞,−1[ III (ghost)

driven by B∗ ∈
]
−1,

1

2

]
I(ghost) and III(ghost)

p = 0 ⇔ neutral background

∈
[
0,

1

2

[
II

p = 0 ⇔ neutral background

∈
[

1

2
,

2

3

]
II

p =
1

2
⇔ neutral background

cosmological-like ∈
]

2

3
,

3

2

]
IV

Tabela 2: Resume of discussed configuration types.

As a final remark we note that the magnetic string-
like configuration corresponding to solution III for the
range of the parameter p ∈] −∞,−1[ describing a ghost
gauge sector suggests that, for extended gauge theo-
ries containing a ghost gauge sector coupled to magnetic
charge [60, 61], similar magnetically charged solutions
may be computed in 3 + 1-dimensions [62] and 2 + 1-
dimensions [63].
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A Magnetic Solutions

For completeness, in this appendix we re-derive, direc-
tly from the equations of motion for action (2.1) in the
Cartan-frame, the solutions (2.5) obtained in the main
text from space-time duality. In form notation the ac-
tion (2.1) is

S = −
∫
M

{
eaφ

[
R̃ ∗ 1 + 2λ dφ ∧ ∗dφ

]
− ebφΛ ∗ 1

+ε̂ecφ
[
F̃ ∧ ∗F̃ + ∗J ∧ Ã

]
+ ε̂

m

2
Ã ∧ F̃

}
using the metric parameterization (2.2)

ds̃2 = −f̃2(dt+ Ãdϕ)2 + dr2 + h̃2dϕ2 .
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The Cartan triad is then given by

e0 = dθ0 = f̃(dt+ Ãdϕ) ,

e1 = dθ1 = dr ,

e2 = dθ2 = h̃dϕ ,

e00 = f̃ , e01 = 0 , e02 = f̃ Ã ,

e10 = 0 , e11 = 1 , e12 = 0 ,

e20 = 0 , e21 = 0 , e22 = h̃ ,

(A.1)

such that the line element in the Cartan-frame is

ds̃2 = eiei = ηijdθ
idθj = −(dθ0)2 + (dθ1)2 + (dθ2)2 ,

(A.2)
The electric field Ẽ∗ and magnetic field B̃∗ in the coordi-
nate frame are given by

Ẽ∗ = Ẽ f̃ ,

B̃∗ = B̃ h̃− Ẽ f̃ Ã ,

(A.3)

where Ẽ and Ẽ are the electromagnetic fields in the
Cartan-frame. We note that the metric parameteriza-
tion (2.2) allows for the electric field to be null both
in the coordinate frame and in the Cartan-frame, Ẽ =
0 ⇔ Ẽ∗ = 0. This parameterization also allows for the
Maxwell equations in the Cartan-frame to have purely
magnetic solutions as we will derive next.

Noting that

de0 = −βe0 ∧ e1 + γe1 ∧ e2 ,

de2 = αe1 ∧ e2 ,
(A.4)

the Equations of motion, connections, curvature and re-
maining quantities depend only on the combinations

α =
h̃′

h̃
, β =

f̃ ′

f̃
, γ =

f̃ Ã′

h̃
. (A.5)

The non null connections in the Cartan-frame are

ω0
10 = ω1

00 = β ,

ω0
12 = ω1

02 = ω1
20 = −ω0

21 = −ω2
01 = −ω2

10 = γ/2 ,

ω1
22 = −ω2

12 = −α ,

(A.6)
and the Einstein and the energy-momentum tensor com-

ponents are

G̃00 = −α2 + 3γ2/4− α′ ,

G̃11 = αβ + γ2/4 ,

G̃22 = β2 + γ2/4 + β′ ,

G̃02 = βγ + γ′/2 ,

2T̃00 = ε̂
(
B̃2 + Ẽ2

)
,

2T̃11 = ε̂
(
B̃2 − Ẽ2

)
,

2T̃22 = ε̂
(
B̃2 + Ẽ2

)
,

2T̃02 = −2ε̂B̃Ẽ ,

Φ00 = −aφ′′ + (λ/2− a2)(φ′)2 ,

Φ11 = λ/2(φ′)2 ,

Φ22 = aφ′′ − (λ/2− a2)(φ′)2 .

(A.7)

We note that under the duality (1.3) only the dilaton
contribution to the energy-momentum tensor is invariant
while the Maxwell energy-momentum tensor acquires a
minus sign (this accounts to take ε̂ → −ε̂) and for the
Einstein tensor the terms γ2/4 and 3γ2/4 are swapped.
For a direct comparison with the same tensor quantities
for the standard metric ADM parameterization (1.1) we
refer the reader to the appendix of [23]). In the following
we consider both cases ε̂ = +1 and ε̂ = −1.

The Maxwell Equations are

B̃′ + βB̃ + c B̃ φ′ = mẼ e−cφ , (A.8)

Ẽ′ + αẼ + c Ẽ φ′ + γB̃ = −mB̃ e−cφ , (A.9)

for purely magnetic solutions Ẽ = Ẽ∗ = 0 the Einstein
equations are

eaφ
(
βγ +

γ′

2

)
= 0 , (A.10)

eaφ
[
α2 − 3γ2

4
+ α′ + aφ′′ +

(
a2 − λ

2

)
(φ′)2

]
+

+
1

2
ebφΛ = ε̂B̃2ecφ , (A.11)

eaφ
[
β2 +

γ2

4
+ β′ + aφ′′ +

(
a2 − λ

2

)
(φ′)2

]
+

+
1

2
ebφΛ = −ε̂B̃2ecφ , (A.12)

eaφ
[
αβ +

γ2

4
+
λ

2
(φ′)2

]
+

1

2
ebφΛ = −ε̂B̃2ecφ ,(A.13)
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and the Dilaton equation is

eaφ
[
(4a2 − λ)φ′′ + a

(
4a2 − 2λ

)
(φ′)2

]
+

+(3a− b)ebφΛ = −ε̂(a+ c)B̃2ecφ .
(A.14)

From the second Maxwell Equation (A.9) we obtain

γ = −me−cφ . (A.15)

Using (A.15) in (A.10) one obtains that β = cφ′/2 such

that
f̃ = cf e

c
2φ , (A.16)

where cf is a free integration constant. From the first
Maxwell Equation (A.8) with Ẽ = 0 we obtain

B̃ = χe−
3
2 cφ , (A.17)

where χ is an integration constant. The remain 3
Einstein (A.11), (A.12), (A.13) and the dilaton equa-
tion (A.14) are

aφ′′ + (a2 − λ

2
)(φ′)2 + α2 + α′ − 3m2

4
e−2cφ +

1

2
Λe(b−a)φ = ε̂χ2e(−a−2c)φ , (A.18)

(a+
c

2
)φ′′ + (a2 − λ

2
+
c2

4
)(φ′)2 +

m2

4
e−2cφ +

1

2
Λe(b−a)φ = −ε̂χ2e(−a−2c)φ , (A.19)

λ

2
(φ′)2 +

c

2
αφ′ +

m2

4
e−2cφ +

1

2
Λe(b−a)φ = −ε̂χ2e(−a−2c)φ , (A.20)

(4a2 − λ)φ′′ + a(4a2 − 2λ)(φ′)2 + (3a− b)Λe(b−a)φ = −ε̂(a+ c)χ2e(−a−2c)φ . (A.21)

Employing the same ansatz of [23]

a = 0 ,

c = − b
2
,

λ 6= b2

8
,

(A.22)

where the particular case corresponding to b2 = 8λ
is excluded due to not admitting a solution for the
above equations of motion. Given this ansatz we com-
bine (A.19) with (A.21) obtaining

φ′ = ±
√
c1e

b
2φ , (A.23)

such that the Dilaton is

φ = −2

b
ln(cφ r) , (A.24)

where

cφ =
|b|
2

√
c1 ,

c1 = −2
b2(ε̂χ2 + 2Λ) + 2λ(4ε̂χ2 + 2Λ +m2)

λ(b2 − 8λ)
.

(A.25)
Imposing either of the equations (A.19) or (A.21) to be
obeyed by this solution we obtain that

χ2 = −ε̂2Λ(b2 + 12λ) + 4λm2

b2 + 24λ
, (A.26)

such that c1 is rewritten as

c1 = 4
m2 − 6Λ

b2 + 24λ
, (A.27)

and from (A.20) we obtain

α = −
(

16
λ

b2
+ 1

)
1

2 r
. (A.28)

Therefore
h̃ = ch r

− 8λ
b2
− 1

2 , (A.29)

and from (A.16)
f̃ = cf

√
r , (A.30)

where ch and cf are free constants. From (A.15) we ob-
tain that

Ã = cA r
− 8λ
b2
−1 + cA∞ , (A.31)

where

cA =
mCh

Cf
(
8λ
b2 + 1

)
√

1 + 24λ
b2

m2 − 6Λ
. (A.32)

Replacing these solutions in (A.18) and demanding this
equation to be obeyed we obtain that

λ± =
b2

8

3Λ∓
√

Λ(2m2 − 3Λ)

m2 − 6Λ
. (A.33)

It is further required to ensure that all these relations
are possible for real valued constants, in particular that
c1 > 0 and χ2 > 0. We note that the condition c1 > 0 is
obeyed in the range 0 < Λ < m2/3 except for the particu-
lar case Λ = m2/6 for which c1 = 0. Then, imposing the
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B EXPRESSIONS FOR M , SZ AND ΦB FOR PARTICULAR VALUES OF THE PARAMETER P

condition χ2 > 0, we obtain the four possible solutions
and respective bounds on the cosmological constant

{
ε̂ = +1
λ = λ+

:



χ2 =
1

2

[
−Λ +

√
Λ(2m2 − 3Λ)

]
c1 =

4

b2

[
3Λ +m2 +

√
Λ(2m2 − 3Λ)

]
0 < Λ <

m2

2

{
ε̂ = −1
λ = λ+

:



χ2 =
1

2

[
Λ−

√
Λ(2m2 − 3Λ)

]
c1 =

4

b2

[
3Λ +m2 +

√
Λ(2m2 − 3Λ)

]
0 < Λ <

m2

6
∨ m2

2
< Λ <

2m2

3

{
ε̂ = +1
λ = λ−

:



χ2 =
1

2

[
Λ +

√
Λ(2m2 − 3Λ)

]
c1 =

4

b2

[
3Λ +m2 −

√
Λ(2m2 − 3Λ)

]
0 < Λ <

m2

6

{
ε̂ = −1
λ = λ−

:



χ2 =
1

2

[
Λ +

√
Λ(2m2 − 3Λ)

]
c1 =

4

b2

[
3Λ +m2 −

√
Λ(2m2 − 3Λ)

]
m2

6
< Λ <

2m2

3
(A.34)

B Expressions for M , Sz and ΦB for
particular values of the parame-
ter p

In this appendix are listed the explicit expressions for the
mass M (2.35), angular momentum Sz (2.36) and mag-
netic flux ΦB (2.41) for the particular values of the pa-
rameter p not included in the expressions (2.37), (2.39)
and (2.42).

Evaluating the integral expression for the mass M for

p = 1 with A given in (2.9) we obtain

p = 1 ,

M = − ε̂C
2
BCφπ

|CfCh|

(
r−1

(
1− C̃2

A − (C̃A + θ̃)×

×(C̃A + θ̃ + 2C̃A log(r))− C̃2
A log(r)2

))
r=δIR

,

(B.1)
for p = 6/5 evaluating (2.35) we obtain

p =
6

5
,

M =
ε̂C2

BCφπ

|CfCh|

(
− 5

4
r−

4
5

(
8C̃Aθ̃ r

3
5 + 2θ̃2 r

2
5 − 1

)

+C̃2
A log(r)

)δUV
δIR

,

(B.2)
for p = 4/3 we obtain

p =
4

3
,

M =
ε̂C2

BCφπ

2|CfCh|

(
3r−

2
3

(
C̃2
A r

4
3 + 4C̃Aθ̃ r + 1

)

+2θ̃2 log(r)

)δUV
δIR

,

(B.3)
for p = 5/4 we obtain

p =
5

4
,

M =
2ε̂C2

BCφπ

3|CfCh|

(
r−

3
4

(
6C̃2

A r − 6θ̃2 r
1
2 + 2

)

+3C̃Aθ̃ log(r)

)δUV
δIR

,

(B.4)

and for p = 2 we obtain

p = 2

M =
ε̂C2

BCφπ

12|CfCh|

(
r2
(

3C̃2
A r

2 + 8C̃Aθ̃ r + 6θ̃2
)

−12 log(r)

)δUV
δIR

.

(B.5)
Evaluating the integral expression for the angular mo-
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mentum Sz for p = 1 with A given in (2.9) we obtain

p = 1 ,

Sz = +
ε̂C2

BCφπ

(CfCh)2

(
r−1

(
(C̃A + θ̃)2 + C̃A(5C̃A + 3θ̃)

−θ̃ + C̃A log(r)
(

3(C̃A + θ̃)2 + 3C̃A − 1

+C̃A log(r)(3(C̃A + θ̃) + C̃A log(r))
)))

r=δIR

,

(B.6)
for p = 7/6 evaluating (2.36) we obtain

p =
7

6
,

Sz =
ε̂C2

BCφπ

(CfCh)2

(
− 18C̃2

Aθ̃r
− 1

6 − 9C̃Aθ̃
2 r−

1
3 − 2θ̃3 r−

1
2

+
3

2
C̃A r

− 2
3 +

6

5
θ̃ r−

5
6 + C̃3

A log(r)

)δUV
δIR

,

(B.7)
for p = 6/5 we obtain

p =
6

5
,

Sz =
5ε̂C2

BCφπ

12(CfCh)2

(
12C̃3

A r
1
5 − 36C̃Aθ̃

2 r−
1
5 + 4C̃A r

− 3
5

+3θ̃ r−
4
5 − 6θ̃3 r−

2
5 +

36

5
C̃2
Aθ̃ log(r)

)δUV
δIR

,

(B.8)
for p = 5/4 we obtain

p =
5

4
,

Sz =
ε̂C2

BCφπ

3(CfCh)2

(
6C̃3

A r
1
2 + 6C̃A r

− 1
2 + 4θ̃ r−

3
4

−12θ̃3 r−
1
4 + 36C̃2

Aθ̃ r
1
4 + 9C̃Aθ̃

2 log(r)

)δUV
δIR

,

(B.9)
and for p = 4/3 we obtain

p =
4

3
,

Sz =
ε̂C2

BCφπ

2(CfCh)2

(
2C̃3

A r + 18C̃Aθ̃
2 r

1
3 + 6C̃A r

− 1
3

+3θ̃ r−
2
3 + 9C̃2

Aθ̃r
2
3 + 2θ̃3 log(r)

)δUV
δIR

,

(B.10)

for p = 3/2 we obtain

p =
3

2
,

Sz =
ε̂C2

BCφπ

(CfCh)2

(
1

2
C̃3
A r

2 + 3C̃Aθ̃
2 r + 2θ̃ r−

1
2

+2θ̃3 r
1
2 + 2C̃2

Aθ̃ r
3
2 − C̃A log(r)

)δUV
δIR

,

(B.11)
for p = 2 we obtain

p = 2 ,

Sz =
ε̂C2

BCφπ

20(CfCh)2

(
4C̃3

A r
5 + 20C̃Aθ̃

2 r3 − 20C̃A r

+10θ̃3 r2 + 15C̃2
Aθ̃ r

4 − 20θ̃ log(r)

)δUV
δIR

.

(B.12)

Evaluating the integral expression for the magnetic
flux ΦB for p = 1 with A given in (2.9) we obtain

p = 1 ,

ΦB =
2C2

BC
2
hCφπ

27

(
r3
(

9− 2C̃2
A + 6C̃Aθ̃ − 9θ̃2

+3C̃A log(r)
(

2C̃A − 6θ̃ − 3C̃A log(r)
)))

r=δUV
,

(B.13)
for p = 1/3 evaluating (2.41) we obtain

p =
1

3
,

ΦB = −CBCφC2
hπ

(
− 3

2
r

4
3 − 6θ̃C̃A r

− 2
3

−3

2
C̃2
A r

4
3 + 2θ̃2 log(r)

)δUV
δIR

,

(B.14)

and for p = 3/5 we obtain

p =
3

5
,

ΦB = −CBCφC2
hπ

(
− 5

4
r

8
5 +

5

2
θ̃2 r

4
5

+10θ̃C̃A r
2
5 + 2C̃2

A log(r)

)δUV
δIR

.

(B.15)
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Abstract In this brief article we will be looking in to touch some of the significant uses of the coconut products with
respect to its biodegradable aspect in addition to its worthiness as a wholesome food.

Biodegradation We hear the term biodegradation or bi-
odegradability more often now than ever for all the rea-
sons you can imagine. The term often used in tandem
with recycling although the latter does not directly in-
volve biological mechanism for the degradation. Biode-
gradation is the degradation mechanism related to living
materials involved with microorganisms such as bacteria
over a certain period of time. These materials are then
used as growth materials for fresh life forms, biogenesis,
e.g. plants, animals etc. On the other hand recycling is
the reuse of produced materials individually or collecti-
vely by way of processing to different components, which
may or may not be degradable. However, to our inte-
rest we will explore the biodegradability or biodegrada-
ble materials produced with related to coconut or coco
as it is referred to as opposed to recycling or recyclable
materials.

Coconut Coconuts are known for their great resource-
fulness, as evidenced by many traditional exploits, ran-
ging from food to cosmetics and lately as a potential
energy generating mode. They form a regular part of the
diets of many people in the tropics and subtropics, Sri
Lanka, India, Philippine, Indonesia and Thailand in par-
ticular. Coconuts are distinct from other fruits for their
large quantity of water which can be consumed as a re-
fresher and sometimes given as a supplement that con-
tains essential electrolytes. When mature, they can be
used as seed nuts or processed to furnish oil from the
kernel, charcoal from the hard shell, and coir from the
fibrous husk. In Sanskrit it is called as kalpa vriksha ("the
tree which provides all the necessities of life"). In the Ma-
lay language it is called pokok seribu guna("the tree of a
thousand uses"). In the Philippines, the coconut is com-
monly called the "tree of life"In Sri Lanka there is an esta-
blished coconut-based industry largely for the consump-
tion of its milk and oil as food, a Sri Lankan food dish
without them is almost inconceivable. The coconut tree
is sometimes attributed to the ‘tree of the heaven’ (‘Su-
rathura’ in Sinhala language), as the whole coconut tree
is used for many different applications and none is being

spared as waste material in daily life. Figure 1 shows
coconuts grown in a tree from Sri Lanka.

Fig. 1 — Coconuts frown in a tree in Sri Lanka

The oil and milk are commonly used in cooking and
frying, as well as in soaps and cosmetics. The husks and
leaves can be used as material to make a variety of pro-
ducts for furnishing and decorating. The coconut also
has cultural and religious significance in certain societies,
particularly in India where it is used in Hindu rituals [1].
Vinegar and alcohol manufacturing are also some of the
essentials products as part of coconut derivatives.

Fig. 2 — A bottle of coconut vinegar 1

1picture credit http://indiatoday.intoday.in/story/7-reasons-to-move-on-from-acv-to-coconut-vinegar-it-has-got-coconut-

water-apple-cider-vinegar/1/525565.html
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Table 1 — Nutritional value per 100 g (3.5 oz)

Energy 354 kca l (1480 kJ )

Carbohydrates 15.23 g
Sugars 6.23 g
Die ta ry f i b e r 9.0 g

Fat 33.49 g
Saturated 29.698 g
Monounsaturated 1.425 g
Polyunsaturated 0.366 g

Pro te in 3.33 g
Tryptophan 0.039 g
Threonine 0.121 g
I s o l e u c i n e 0.131 g
Leucine 0.247 g
Lys ine 0.147 g
Methionine 0.062 g
Cys t ine 0.066 g
Phenyla lanine 0.169 g
Tyros ine 0.103 g
Val ine 0.202 g
Arg in ine 0.546 g
H i s t i d i n e 0.077 g
Alanine 0.170 g
A s p a r t i c ac id 0.325 g
Glutamic ac id 0.761 g
Glyc ine 0.158 g
Pro l i ne 0.138 g
Ser ine 0.172 g

Vitamins
Thiamine (B1) (6%) 0.066 mg
R i b o f l a v i n (B2) (2%) 0.020 mg
Niac in (B3) (4%) 0.540 mg
Pantothenic ac id (B5) (6%) 0.300 mg
Vitamin B6 (4%) 0.054 mg
Fo la te (B9) (7%) 26e−3 mg
Vitamin C (4%) 3.3 mg
Vitamin E (2%) 0.24 mg
Vitamin K (0%) 0.2e−3 mg

Minera ls
Calcium (1%) 14 mg
Iron (19%) 2.43 mg
Magnesium (9%) 32 mg
Manganese (71%) 1.500 mg
Phosphorus (16%) 113 mg
Potassium (8%) 356 mg
Sodium (1%) 20 mg
Zinc (12%) 1.10 mg

Other c o n s t i t u e n t s
Water 46.99 g

The nutritional content of the coconut kernel is shown
in the table 1 suggests the immense value of the coconut
kernel as a food [2].

Historical aspect of coconut In the bygone era some
of the tropical countries, Sri Lanka in particular whose
history intertwined with coconut fibre or coir products
especially in the rural areas for the local market such as
floor mats, doormats, brushes, ropes and mattresses. This
is largely due to its mass availability thus the cost effec-
tiveness. However, with the dawn of the open economic
policies in such countries leading to globalisation subse-
quent to 1970s the end products based on coir have been
gradually replaced by the cheap alternative yet mass pro-
duction of petroleum based product commonly known as
plastics. The plastic find was revolutionary yet with some
dire consequences, notably the non-degradation of its
processed object. The global impact on non-degradation
of plastics has been alarming in modern times, hence the
lookout for plastic alternatives, in the form of biodegra-
dation. In other words the world is looking for damage
limitations. As a blessing in disguise we are deemed to
reconsider what our ancestors did before with a hint of
science and technology smeared with engineering over
it.

Advances in coconut products As coir consists of con-
siderable strength that can be applied by itself or reinfor-
ced with other suitable materials. Scientists have shown
various properties of coir, the mechanical properties and
degradation of the fibre over time subsequent to different
processing techniques, but we do not intend to investi-
gate such techniques in detail as that would be of acade-
mic relevance. However, as we embrace science and te-
chnological development in the contemporary world, the
other significant uses of the coconut have been explored
and discussed too, especially for advanced applications as
a potential biodegradable material. In such matters the
coir of the coconut becomes a pivotal part of the ongoing
research and development across the board both acade-
mically and commercially. As with research studies poin-
ting positive health impacts related to coconut milk and
oil it is also noteworthy to look at some of the brighter
side of the coir products as a separate entity, an emerging
green product development.

It would be a tough task to throw away any of the
components that derive from coco due to its versatility
as discussed before. However, all these components have
to be dissected carefully in order to produce a material
that is of significance. In terms of coir, this can be pro-
cessed to fabricate many commodities with considerable
strength and biodegradable factor.

Products of coir In some parts of the world the coconut
coir logs (Figure 3) are used as a biodegradable erosion
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control option for hills, banks, shorelines, and other ero-
sion prone areas.

Fig. 3 — Coconut coir logs 2

The logs can be effectively used in restoration pro-
jects, stabilization areas, and construction job sites due
to its moisture retaining properties. Ease of Installation,
providing nutrients to surrounding areas, allowing for
deep rooting of plants, helping to build into existing con-
tours, requiring no chemical treatment, high air and wa-
ter permeability, environmentally friendly, safe for sur-
rounding wildlife, biodegrades over 2-5 years, effectively
holding seeds and saplings in place are some of the bene-
fits of these coir logs. In addition to finely made coir logs,
mats, blocks and wattles can also be named as some of
the products for erosion control purpose.

Biodegradable chairs and flower pots Coir can be
made as different layers to blend with latex and to stack
them onto each other for desired stiffness and fibre den-
sity. Dutch designer Jorrit Taekema has fabricated a bio-
degradable chair (See Figure 4) out of such layered coco
fibres. It appears as if a proper sofa type chair though its
durability, strength and sustainability have not been eva-
luated. Moreover, biodegradable flower pots are widely
made for the gardens.

Biodegradable erosion control blanket 100% chemi-
cally untreated coir fibre blankets can be fabricated. They
are woven in different threads and sizes. Since they are of
high amount of lignin (cellulose containing), coconut fi-
bres are decomposition resistant. They last far more than
other blankets and are tear resistant. For all these re-
asons, when the germinating period of a plant lasts for

more than a vegetative season, Coir fibre blankets are
used in bioengineering methods for superficial stabiliza-
tion. These blankets are used in slope and bank covering,
slopes with erosion control problems and complete bio-
degradation is estimated within five years.

Fig. 4 — A biodegradable coconut fibre chair designed by
Jorrit Taekema 3

Decorative pots and hanging bowls Appropriate de-
corative pots and hanging bowls can also be created using
coir and latex with better air circulation, water absorp-
tion with high water and fertilizer retention properties.
Weed prevention disks & mats can be made to provide
continuous soil cover to retain moisture and prevent soil
erosion while preventing weed growth.

Scope of coir products In an ideal world there could
be plenty of limitations around us but in a world with
many creators and innovators the limit for the coir pro-
ducts is endless. As with the advancement of science and
technology we can expect more fascinating objects to ma-
terialise upon us that would not destroy and clatter our
beautiful world but eventually leave just like us one day.
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