
December 2022, No 11

Scripta-Ingenia

A study of the letter A
This study of the letter A serves to illustrate the concept of abstract complex link. A complex
link structure is a mathematical structure consisting of three things: a set of indexes, say A,
an endomap of A, say φ : A → A, and a geometrical realization map into the complex plane,
say g : A → C. It can be seen as an abstraction to the concept of parametrized planar curve,
that is, a continuous function from the unit interval into the complex plane.
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Let us consider the complex points z1 to z7 (as il-
lustrated on the left) with z1 = 1+0i, z2 = 3+1i,
z3 = 5 + 0i, z4 = 3 + 6i, z5 = 4 + 2i, z6 = 2 + 2i
and z7 = 3 + 4i. In this case, the set A is a set
of indexes {1, . . . , 7}, the endomap φ : A → A
encodes the cyclic permutations (1, 2, 3, 4) and
(5, 6, 7) whereas the geometric realization map
g : A → C associates each complex number to
the respective index, that is, g(k) = zk, with
k = 1, . . . , 7. There are several advantages in in-
terpreting the abstract structure (A, φ, g) as a
generalization of a discretization of a parame-
trized planar curve. In the first place there is a
clear separation between the geometric informa-
tion and the topological one (the geometry has
to do with angles and distances whereas topology
is concerned with the way things are connected).
For example, if we move the points z6, z7 and z5
to new locations z′

6 = 1 + 3i, z′
7 = 3 + 6i and

z′
5 = 5 + 3i we are only changing the image of

the map g, as illustrated in the second image on
the left. The fact that the points z′

7 and z4 over-
lap is a mere geometrical coincidence, there is no
real topological connection between them. Howe-
ver, we observe that an intersection was created
between the edge 5 and edges 3 and 4. Once again
this intersections are merely geometrical. If one
wishes to make them topological then it is requi-
red to introduce new vertices and split the arrows
3 and 4 into new edges, conveniently labeled res-
pectively as 3.0, 3.5, 4.0, 4.5 whereas edge 5 ne-
eds to be split into three new edges, conveniently
labeled as 5.0, 5.25, 5.75. This is convenient since
the arrows 3 and 4 are intersected at t = 0.5 of
its length while edge 5 is intersected at t = 0.25
and t = 0.75 of its length. Moreover, taking ad-
vantage of the structure of the complex plane we
may define a first differential of the structure as
d = gφ−g and a second differential as d2 = d(φ)

d .
Then g is recovered from d2 up to two constants
c1 and c2 as g = c1 +cumsum(c2 ∗cumprod(d2)).
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Abstract The control of lifting devices is very important for improving task performance and safety. In this paper,
the construction of a laboratory test rig is presented and consists of a system driving a wagon rail, which can move
along 18 m, with a 1 m long free-wing pendulum attached. Actuation in the presented system model has the velocity
of the cart as input, rather than the more traditional force input models. A comparison between simulated and real
operation is presented, in closed loop as well as in open loop.

Keywords: Laboratory apparatus, Crane control, Suspended load, System modeling, linearization.

1 Introduction
Hoisting and load transportation devices are commonly
used in different industrial and logistic operations ran-
ging from manufacturing to construction, from quarries
and mines to port operation. There are different cons-
truction and operation modes, as well as different number
of degrees of freedom of the movements and configurati-
ons. These devices can be classed into Boom, Rotary, and
Bridge/Gantry cranes, the last of which is the more fre-
quent in industrial manufacturing facilities [1], [10].

Common to (horizontal) rotary and gantry cranes,
there is a cart moving along a horizontal rail, to which
the load suspension cable is attached. Generally, there is
a considerable length to this cable, inducing significant
oscillatory movements of the load, both due to the (ope-
rator) imposed movement as well as due to external dis-
turbances like the wind. This circumstance can impose
restrictions on operational performance and can be a ha-
zard as well, and there may be a considerably lengthy
learning curve for operators to deal efficiently and safely
with their task.

This clearly motivates the application of automatic
control systems and strategies to overcome this problem,
which in turn proves to be a good control problem to
test and contrast different control strategies, as well as
controller implementations in a laboratory environment.

As a result, a test rig was built to serve as a testbed

for the study of different approaches to this control pro-
blem at a laboratory scale. The system is built on a 18 m
long rail with a sliding cart from which a 1 m long rod is
freely hanging. The cart is driven by a stepper motor to
which the controller imposes speed, while both the cart
position and the rod’s oscillation are being measured.

This paper describes the device built, the mathema-
tical models derived and some encouraging preliminary
control results used to validate the rig as a testbed and
to ensure the significant improvement of introducing au-
tomatic control on the operation of such a system.

In the remainder of this work, a review of recent re-
sults on the subject is presented in section two, followed,
in section 3, by the derivation of the relevant mathema-
tical models used for simulation and controller tuning.
Then, section 4 shows the description of the device built
and the main aspects of the construction. Next, in section
5, simulated and real results of the application of double
PID control are presented and compared. Finally, some
conclusions are drawn and future direction for this work
are pointed out.

2 Related work
The challenge provided by the control of crane-type de-
vices has been taken by researchers for quite some time
and there is a well-established base of related work in the
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3 SYSTEM MODEL DERIVATION:

literature. Two review publications have been the starting
point for the present work, the first [1] gathers research
results up to 2003, and the second reviews the published
work up to 2016 [10].

In what the control approaches are concerned, most
initial works were based on simplified and linear mode-
ling. However, in [1] there is a report of some limitations
of these models to cope with the inherent nonlinearities
stemming from external disturbances and non-modeled
behaviors. According to [10], other authors have studied
the influence of such nonlinearities in the robustness of
the controlled systems.

To improve the oscillation of the load, mainly happe-
ning in the beginning and in the end of the trajectories,
there is the reference to open loop, closed-loop and hy-
brid approaches. By using open-loop control, it is possible
to shape the reference command so that the acceleration
imposed by the movement is gradually applied, taming
load oscillation [6]. This input-shaping technique can be
improved if more initial information, such as cable length
or load mass is also taking into consideration [2].

Closed-loop techniques take the benefits of real-time
measuring of the controlled variables (mainly load oscil-
lation and cart position) to improve performance, even
in the presence of disturbances as well as unmodeled or
poorly modeled features [8], [7]. This closed-loop opera-
tion showed good results even if the oscillation angle is
not directly measured, but estimated using the mathe-
matical model [12]. However, [10] refers that closed-loop
systems in large cranes can be negatively influenced by
sensor noise, which may result in stability problems and,
consequently, in safety issues.

A hybrid approach, combining input shaping for re-
ducing expected oscillations and feedback control to deal
with unexpected disturbances has been also tested with
good results [5]–[9].

Other works were relevant for this development,
namely those concerned with modeling and testing
pendulum-based systems (natural or inverted), such as
[3]–[11].

3 System Model derivation:
3.1 Mechanics
For the derivation of the system’s model, a simplified cart-
pendulum (Fig. 1) approach was used, where a rod with
no mass was considered and the masses of load and cart
were placed in their respective centers of mass.

In the exposed simplified model, the following para-
meters stand out:

• u is the external force applied to the car, in Newton
(N);

• l is the length of the cable connecting the car to the
suspended mass, in meters (m);

• θ is the angle between the vertical position and the
instantaneous position of the pendulum, in degrees
(◦);

• m is the suspended mass, in kilogram (kg);

• M is the mass of the cart, in kilogram (kg);

• Mpendulum
f is the moment of friction of the pendu-

lum, in Newton × meter (N.m).

• F cart
f is the frictional force of the cart, in Newton

(N);

Figure 1: Simplified model of the cart-pendulum system.

A mechanical model can be calculated from the La-
grangean approach by differentiating the Lagrange func-
tion L

L (r1, r2, ..., rn; v1, v2, ..., vn; t) ≡ T − U, (3.1)

where T and U are the kinetic and potential energies,
respectively, using

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qext

i , (3.2)

In this equation, qi are the generalized coordinates
and Qext

i the external generalized forces applied. Since
the system has two degrees of freedom, (cart displacement
and load oscillation) the chosen generalized coordinates
were those displacements and the generalized forces in-
volved are the applied force to the cart and the friction
force and moment applied at the cart’s wheels and to the
oscillating rod axis, respectively.

The potential energy of the system, Us, is only that
of the pendulum, Up since the cart has a horizontal dis-
placement, so,

Us = Up = mgl − mgl cos(θ) = mgl (1 − cos (θ)) (3.3)

As for the kinetic energy, both bodies contribute, so, con-
sidering that the velocity vector for the pendulum can be
decomposed as

vx
t = θ̇l cos (θ) (3.4)

vy
t = θ̇l sin (θ) (3.5)
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the kinetic energy of the pendulum becomes

TP = 1
2m

(
(ẋ + vx

t )2 + (vy
t )2
)

. (3.6)

The kinetic energy of the car is given by

TC = 1
2Mẋ2 (3.7)

and therefore the kinetic energy of the system, Ts it be-
comes

Ts =TC + TP =

= 1
2Mẋ2 + 1

2m
(
ẋ2 + 2lẋθ̇ cos (θ) + θ̇2l2) ,

(3.8)

The Lagrangean function results in

L = TS − US =

= 1
2
[
(m + M) ẋ2 + 2mlẋθ̇ cos (θ) + mθ̇2l2]

− mgl (1 − cos (θ))

(3.9)

As mention previously, the generalized coordinates
and generalized external forces are,

q =
[

x
θ

]
and Qext =

[
u − F cart

f

−Mpendulum
f

]
or

Qext =
[

u − Dx · ẋ

−Dθ · θ̇

] (3.10)

where Dx and Dθ are the damping coefficients for the cart
wheels and the rod pin. From equation (3.2) applied to
each of the generalized coordinates one gets,

d

dt

(
∂L

∂ẋ

)
− ∂L

∂x
= Qext

x ⇔

ẍ (m + M) + mlθ̈ cos (θ) − mlθ̇2 sin (θ) = u − Dx · ẋ,

(3.11)

and

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= Qext

θ ⇔

mlẍ cos (θ) + mgl sin (θ) + ml2θ̈ = −Dθ · θ̇

(3.12)

which are the nonlinear equations of movement for the
system.

3.2 Nonlinear state-space model
Using as the state variables the linear and angular displa-
cements of the cart and pendulum and their respective ve-
locities, a nonlinear state-space model can be calculated
as

ẋ =


ẋ1
ẋ2
ẋ3
ẋ4

 =


f1 (x1, x2, x3, x4)
f2 (x1, x2, x3, x4)
f3 (x1, x2, x3, x4)
f4 (x1, x2, x3, x4)

 (3.13)

where

f1 (x1, x2, x3, x4) = x2 (3.14)

f2 (x1, x2, x3, x4) =

− l2. sin (x3) .m.x2
4

l. [cos2 (x3) .m − m − M ] − cos (x3) .l. sin (x3) .g.m

l. [cos2 (x3) .m − m − M ]

+ cos (x3) .Dθ.x4

l. [cos2 (x3) .m − m − M ] − −l.Dx.x2 + l.u

l. [cos2 (x3) .m − m − M ]
(3.15)

f3 (x1, x2, x3, x4) = x4 (3.16)

f4 (x1, x2, x3, x4) = cos (x3) .l2. sin (x3) .m2.x4

l2.m. [cos2 (x3) .m − m − M ]+

− cos (x3) .l.Dx.m.x2 + l.M. sin (x3) .g.m

l2.m. [cos2 (x3) .m − m − M ] +

+ l. sin (x3) .g.m2 + cos (x3) .l.m.u

l2.m. [cos2 (x3) .m − m − M ] +

M.Dθ.x4 + m.Dθ.x4

l2.m. [cos2 (x3) .m − m − M ] .

(3.17)

3.3 Linear state-space model
Because the system will be operating around an equili-
brium point, a linear approach to the model can be pro-
posed by stating a small oscillations hypothesis and by
expanding the differential equations as a first-order Tay-
lor series.

Let x̄ be the equilibrium point of the system, that
corresponds to the rest position, i.e.

x̄ =


0
0
0
0

 (3.18)

and
u = 0, (3.19)
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we obtain the linearized state equation of the nonli-
near state equation 3.13 as

ẋ = Ax + Bu (3.20)

where

ẋ = ∂f

∂x

∣∣∣∣
(x,u)=(x̄,0)

.x + ∂f

∂u

∣∣∣∣
(x,u)=(x̄,0)

.u , i.e.

ẋ =


0 1 0 0
0 −Dx

M
g.m
M

Dθ

l.M
0 0 0 1
0 Dx

l.M
−g.(m+M)

M.l
−Dθ.(m+M)

M.m.l2

 .x

+


0
1

M
0

− 1
M.l

 .u

(3.21)

Since the system measures both displacements, the
output equation is trivial [4] and becomes

y =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .x (3.22)

3.4 Velocity driven linear state-space model
Since the mathematical model given in (3.21) takes into
account that the system input consists of a force, u, im-
posed on the car, and since in this work a stepper motor
with a simple speed (frequence) imposing driver is used
as the cart actuator, there is a need to rewrite the mathe-
matical model with the linear velocity of the car as the
input variable. So, from the state equations


ẋ = v

ẍ = v̇ = − Dx

M v + g.m
M θ + Dθ

l.M θ̇ + 1
M u

θ̇ = θ̇

θ̈ = Dx

l.M v − g.(m+M)
M.l θ − Dθ.(m+M)

M.m.l2 θ̇ − 1
M.l u

(3.23)

the second equation can be solved for the input u and
introduced in the fourth equation resulting, in

θ̈ +
(

Dθ

m.l2

)
θ̇ + g

l
θ = −1

l
v̇ (3.24)

Following [13], by integrating the equation twice and
setting the first state variable as X1 = θ one gets,

Ẋ1 = −
(

Dθ

m.l2

)
θ − g

l

∫
θ − 1

l
v. (3.25)

If the second state variable is defined as X2 = − g
l

∫
θ,

the equation 3.25 can be written as

Ẋ1 = −
(

Dθ

m.l2

)
θ + X2 − 1

l
v. (3.26)

Adding, as the third state variable, the displacement of
the cart, a simpler linear third-order model can be obtai-
ned:

 Ẋ1
Ẋ2
Ẋ3

 =

 −
(

Dθ

m.l2

)
1 0

− g
l 0 0

0 0 0

 X1
X2
X3

+

 − 1
l

0
1

 v

[
θ
x

]
=
[

1 0 0
0 0 1

] X1
X2
X3


(3.27)

3.5 Control strategy

To validate the built system as testbed as well as the
derived models, a decoupled double PID controller was
implemented, as suggested by several authors [7], [12],
[3]–[11],

Figure 2: Schematic of control system using 2 closed
loop PID controllers.

As can be seen in Fig. 2, the control strategy is im-
plemented using two similar controllers, one respecting
to linear displacement and the other to angular displa-
cement. Both controllers use standard PID formulations
and the control input to the system is calculated by com-
bining the output of both controllers with equal weights.
Given that the objective is to reduce oscillations during
the whole excursion of the movement the angular dis-
placement reference is naturally set to zero, effectively
turning the angle displacement loop into a regulator.
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5 TESTS AND RESULTS

4 The built rig
The experimental setup built is an 18 m long rail with a
1, 5 kg cart to which a 1 m long aluminum rod is atta-
ched through a bearing and allowed to pivot freely. The
mass is a set of cylindrical weights that can be used to
vary the mass of the pendulum up to 2 kg at this stage.
The motion is imposed by a stepper motor attached to
the structure and connected to the cart by a timing belt
Fig. 3.

The system is sensorized using a rotary incremental
encoder attached to the motor shaft, and a potentiome-
ter synchronized with the rod’s pivoting axis.

Figure 3: Equipment modeling rendering.

The control hardware, Fig. 4, consists of a microcon-
troller board (Arduino Mega) and an external board with
the connections for the sensors as well as a set of opera-
ting and emergency switches.

Figure 4: Architecture of the equipment control system.

The control software was built using a standard PID
library for Arduino1 and using interrupt driven routines
to accurately generate the pulse train for the stepper mo-
tor drive operation to capture the encoder readings, as
well as to respond to events generated by both the limit
switches and the user-operated switches.

5 Tests and results
With implemented rig and the models derived, a set of
tests were performed to establish preliminary results on

both the proximity of the open-loop model predictions in
simulation with real performance as well as to ascertain
the improvement of the performance of the controlled sys-
tem.

In fact, the modeling options were shown to be ap-
propriate, since the simulated performance in open loop
is very close to the measured test results as can be seen
in Fig. 5, where a comparison is done with the free oscil-
lation of the pendulum dropped with an initial condition
of, approximately, 25 degrees.

Figure 5: Comparison of real data acquired and
simulation data on the evolution of the oscillation angle

of a load (0.5 kg) when it is dropped from a height
corresponding to approximately 25 Degrees

For the closed-loop system, we will consider, kplin,
kilin and kdlin as the proportional, integrative and deri-
vative constants of the car position controller, and kpang,
kiang and kdang as the counterpart constants of the an-
gle controller. The closed-loop operation also validates the
models as can be seen in Fig. 6, depicting a test where a
step input in position with an amplitude of 2, 25 m was
applied. Notice that, in these tests, the angle loop ope-
rates as a regulator, since the objective is to maintain a
zero-degree (vertical) angle on the rod.

Figure 6: Position of the car and Angle of oscillation of
the load, as a function of time, with kplin = 500 and

kpang = 10.

1https://playground.arduino.cc/Code/PIDLibrary/
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Taking into account the transient response predicted
through the simulations, the table in Fig. 7 shows not only
the best set of parameters (manually tuned) for each cri-
teria, but also the respective settling times for each of the
measured output variables.

Figure 7: Accommodation times for the most appropriate
sets of parameter values, according to each one of the

criteria

In what concerns the potential for improvement of the
application of automatic control to crane operation, it is
quite clear from the results on Fig. 8, where is shown
that, for the open-loop operation of the same step input,
the system takes more than 300 s to stop oscillations and
to attain steady-state as opposed to less than 10 seconds
when the control was in operation. Even if a full PID
controller was implemented, in the results shown the de-
rivative part was not applied, since its use rendered the
control too sensitive to noisy rod angle measurements.
As can be noticed in Fig. 8, the controlled system had
a slightly slower settling time in the cart position (red
and orange curves), when compared with the open-loop
(maximum velocity, blue line). However, this is more than
superseded by the long time the pendulum oscillation ta-
kes to decay, once the cart motion is stopped. It can be
noticed, however, that except for the initial and final short
periods, the pendulum keeps near vertical for the inter-
mediate part of the journey.

Figure 8: Simulation of the cart position (top) and the
load sway angle (bottom) as a function of time,

comparing the best results for each criteria.

6 Conclusions and future work
This work shows that the built test rig can be used as a
testbed for controller studies applied to suspended load
transportation systems, providing insight to the compara-
tive results of different controlling algorithms, strategies
and tuning situations.

Also, the models derived, even being simple linear mo-
dels, are usable approaches within the range chosen for
the angle variable, (mainly the maximum angular devia-
tion of the rod from vertical) which, at 25 degrees, is a
significantly large in real crane operation.

Finally, the potential for performance improvement of
the application of closed-loop control on this type of sys-
tems is quite evident from these preliminary results.

The results obtained so far open the way for further
comparative studies with other classes of controllers and
tunning procedures as well as for more complex mecha-
nical arrangements to approximate the rig to real-life si-
tuations. Near future addition to this study will be the
replacement of the rigid rod with a cable, allowing the
cable length to vary and to refine the models and con-
trol strategies to cope with these situations. These con-
clusions about the comparison of the system with and
without control can be seen in the video available at
https://youtu.be/3w7Z_BNloHs.
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Abstract This is a preliminary work that explores future applications of mathematical structures such as multi-links
to the heat conduction problem on discretized geometries with generic coordinates.
Keywords: Injection Molding, Warpage, Conformal Channels, Multi-Link, Thermal, Simulation.

1 Introduction

In the injection molding industry economic viability re-
quires the injection process to be as fast and energetically
efficient as possible with the objective of producing the
largest number of parts in the minimum possible time.
Hence the process optimization must ensure the process
to be as fast as possible maintaining the desired part
quality. In particular to address process optimization by
mold design was suggested in [1, 2] that conformal chan-
nels would allow much lower heating and cooling times
reducing the overall injection time significantly and si-
multaneously allowing for higher energy efficiency. This
alternative channel system consists of a channel network
distributed at a fixed distance from the mold cavity (plas-
tic part). It was also clearly identified in the original stu-
dies that the distance of the channels to the mold cavity
was one of the most relevant parameters affecting the co-
oling time. However it also affects temperature gradients
across the part, hence increasing part warpage and shrin-
kage as the cooling time decreases. Hence, a compromise
situation must be considered in the process optimization.
Other relevant conclusions include the fact that square
channels reduce temperature gradients however also in-
crease mechanical deformation of the mold due to injec-
tion and packing pressures [3]. More recent studies show
that a moderate decrease of both the injection time pro-
cess (5.8 − 6.8%) and average part warpage is easily achi-
evable [4, 5].

The present study proposes a simple algorithm for the
generation of conformal channels that simultaneously mi-
nimizes the part warpage in the injection phase of coo-
ling. The objective is to minimize temperature gradients
as suggested for instance in [1, 2, 6, 8, 9, 10] instead of
directly minimizing mechanical deformations as this is an
equivalent solution being computationally less expensive.

It considers a cubic discretization similarly to [8] and
explicitly consider square section channels as this parti-
cular shape uniformizes the heat distribution of the part
cavity [1, 2, 3].

For a given closed system, the rate of heat transferred

per unit volume at each point within the system is:

Q = −∇ · q (W m−3) , (1.1)

where q quantities denote 3-vectors and · the standard
internal product. The heat transfer flux is given by Fou-
rier’s law of heat conduction

q = −k ∇T (W m−2) . (1.2)

T (K) is the temperature and k (W m K−1) is the thermal
conductivity. Hence we obtain

Q = ∇ · (k ∇T ) . (1.3)

From the overall energy balance of the system we ob-
tain the heat equation

ρ cpṪ = ∇ · (k ∇T ) + ε̇ , (1.4)

where ρ (kg m−3) is the mass density, cp (J kg−1 K−1)
is the specific heat capacity at constant pressure and
ε̇ (W m−3) represents the rate of heat transfer per unit
volume with the exterior of the system (a heat sink or
heat source) [17].

For a generic Riemann manifold M the heat equation
can be derived by minimizing the Dirichlet Energy using
Simon’s Asymptotic Theorem [12]. In covariant formula-
tion for a 4-manifold with metric gµν and the standard
connections Γµ

λρ [13] we obtain

ρcp γ Ṫ = gijDi · (k DjT ) + γ ε̇ , γ = dτ

dt
=
√

gµν ẋµẋν ,

(1.5)
where we are employing the standard conventions, impli-
cit summation over repeated indices, greek indices µ stand
for full space-time coordinates µ = 0, 1, 2, 3, arabic indi-
ces stand for space coordinates i = 1, 2, 3 and indices are
lowered and raised by contraction with the metric tensor.
As usual the derivative operator for 4-vectors is replaced
by the covariant derivative DµXν = ∂µXν + ΓµναXα.
Explicitly writing Di and simplifying the equation, the
covariant formulation of the heat equation is obtained

ρcpṪ = 1
γ

k [∂ik∂jT + ∂i∂jT + kgµνΓjiµ∂νT ] + ε̇ . (1.6)
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2 THE SIMULATION OF THE HEAT EQUATION USING MULTI-LINK STRUCTURE

Aiming at a finite element discretization we further
note that for a manifold with boundary ∂M ̸= 0 this
equation can be integrated over volume∫

M

√
−g γ ρcp Ṫ =

∫
M

√
−g k gijDi(kDjT )+

∫
M

√
−g γ ε̇ .

(1.7)
such that applying the divergence theorem we obtain∫

M

√
−g γ ρcp Ṫ =

∫
∂M

√
−g k gij ∂iT nj +

∫
M

√
−g γ ε̇ .

(1.8)
where h stands for the pull-back metric on the manifold
boundary ∂M .

2 The Simulation of the Heat Equa-
tion using Multi-Link Structure

Assuming a given finite element discretization for flat Eu-
clidean coordinates let us define the following quantities
to be constant inside each finite element x: temperature
T (x), density ρ(x), capacity cp(x), conductivity k(x), po-
sition g(x) and volume V (x). Hence integrating equa-
tion (1.4) over the finite element x of volume V (x) with
boundary ∂V (x) and applying the divergence theorem we
obtain∫

V (x)
ρcpṪ =

∫
∂V (x)

k∇T · n +
∫

V (x)
ε̇ . (2.1)

Further defining the quantities A(x, y) and n(x, y) res-
pectively as the area and average normal of the contact
surface between adjacent finite elements x and y, for a
given spatial discretization we obtain V (x)ρ(x)cp(x)Ṫ (x)
equals to∑

{yx}

k(x, yx)(∇T (x) · n(x, yx)) A(x, yx) + V (x)ε̇. (2.2)

For the definition of the gradient at each finite element
face let us consider the first order forward derivative
∇T (x)|(discrete)

x→yx
= j(x, yx) with

j(x, yx) = T (yx) − T (x)
||g(yx) − g(x)||

g(yx) − g(x)
||g(yx) − g(x)|| . (2.3)

Further considering a first-order discretization over time
of time step ∆t and introducing explicit temporal depen-
dence [17, 18] on

Ṫ (x)
∣∣(discrete) = T (x, t + ∆t) − T (x, t)

∆t
, (2.4)

replacing the discretized expression in equation (2.2) and
dividing the equation by the factor V (x)ρ(x)cp(x) we ob-
tain the recursive discretized equation for the tempera-
ture T

T (x, t + ∆t) = T (x, t) + ∆t

ρ(x) cp(x)

(
1

V (x)S + ε̇x

)
(2.5)

with S =
∑

{yx} k(x, yx) (j(x, yx)·n(x, yx)) A(x, yx). Also
note that generally ρ(x), cp(x) and k(x) varies with tem-
perature. When this variation is implemented in the fi-
nite element model these quantities should be evaluated
at each time step for the respective element temperature
T (x). For simplicity, we will use a first-order approxima-
tion for the values of each function ρ, cp and k. Thus we
will have, in the form of the iterative process (as we will
see further on, the mapping k(x, yx) will be decomposed
into a function of only one variable, so that knowing the
value of k(x, t) for every point x and instant t is enough
to determine k(x, yx)):

ρ(x, t + ∆t) = δρ(x) + λρ(T (x, t) − Tρ) (2.6)
cp(x, t + ∆t) = δc(x) + λc(T (x, t) − Tc) (2.7)
k(x, t + ∆t) = δk(x) + λk(T (x, t) − Tk) (2.8)

where δρ, λρ, Tρ, δc, λc, Tc, δk, λk and Tk are cons-
tants.

It is missing to evaluate k(x, yx) between adjacent fi-
nite elements x and yx. Its value will depend whether the
elements are from the same material or distinct materials.
The following possibilities can be considered [14]:

1. same material or solid-solid:

k(x, y) = k(x) + k(y)
2 (2.9)

2. convection for solid-liquid:

k(x, y) = h||g(y) − g(x)|| (2.10)

where the average for the same material is considered to
account for the variation of k(x) with temperature (gene-
rally T (x) ̸= T (y) ⇔ k(x) ̸= k(y)) and is also applicable
to solid-solid interfaces. h is the convection coefficient at
each solid-fluid interface and depends on the Reynold’s
number. The factor ||g(y) − g(x)|| is considered to offset
the discretized gradient as convection is proportional to
the temperature difference T (y) − T (y).

For the purpose of this work, and to have a simpler
way for computing the result, we choose to make the va-
lue of k dependent on a single variable. By taking the
inverse of k we obtain the resistivity [17] and it is rea-
sonable to assume that its value on the interface of two
different types of materials is given by its average value,
that is,

k(x, y) = 2
(

1
k(x) + 1

k(y)

)−1
= 2k(x)k(y)

k(x) + k(y) .

Let us consider a discretization in cubic elements such
that for each cube there is exactly 6 adjacent cubes. Let
us point out that the cubes can be degenerated or be
constrained to different metrics. The elementary cubes
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will depend on the geometry, for example, the typical ca-
ses are cartesian, cylindrical and spherical. The density,
the specific heat, the thermal conductivity, volume and
rate of heat transfer are also assumed constant for each
finite element. Nevertheless, in a general situation they
may vary for distinct finite elements so that these quan-
tities have a spatial index ρ(x), k(x), cp(x), V (x), ε̇(x).
The Multi-link structure was introduced in the context
of 3D-printing [15] and to apply this mathematical struc-
ture to the heat conduction problem we need the following
information:

1. A set of linear indexes X. Each linear index refers
to one cube in the discrete volume. So, for exam-
ple, V (X) is the volume of the cube indexed by
x ∈ X, whereas T (x, t) is the temperature on the
cube x ∈ X at instant, or iteration, in time t.

2. Transition maps defining a cubic link
αi : X → X, i = 1, 2, 3. This creates a cubic struc-
ture as explained in [15]. These maps are the ones
that determine the topology of the volume. In other
words, they control how each individual cube x ∈ X
is assembled into a volume by specifying its neigh-
bours along each one of the three dimensions. Other
variations are possible, as explained in [15]. Here we
consider the simplest one but only for expository
purposes.

3. Reverse transition maps αj : X → X, j = 4, 5, 6
such that α4 is a reverse to α1, α5 is a reverse to
α2, and α6 is a reverse to α3, as illustrated

α3(x) α4(x)

α5(x) x

OO ;;

oo //

{{ ��

α2(x)

α1(x) α6(x)

further details on this construction may be found
in [16]. Here we simply observe that the six indices
stand for i = 1 : front, i = 2 : left, i = 3 : top,
i = 4 : rear, i = 5 : right, i = 6 : bottom.

4. A projection map, m : X → M ⊂ N associating to
each linear index x ∈ X its type of material M =
{1, 2, 3, . . . , nM }, with nM the total number of dif-
ferent materials involved in the system to be mo-
delled.

5. A vector of physical parameters for each type of
material p : M → R3×3 with p(j) as

(δρ(j), λρ(j), Tρ(j), δc(j), λc(j), Tc(j), δk(j), λk(j), Tk(j))

having the initial conditions defining the maps dis-
played in (2.6), (2.7) and (2.8).

6. To each linear index x ∈ X of the grid we will have
an assignment of its volume, denoted by V (x), and
its source or sink generator, denoted by ε̇(x). These
values may vary with time. An alternative to the
definition of V (x) is to compute an approximation
using the geometrical information (see below).

7. A geometrical realization of the points on the cubic-
link on the 3D-space g : X → R3. We observe that
applying the map g to each one of the 6 transition
maps αi we obtain the six possible directions from
which there is a face going to the exterior of the cube
as illustrated above. In particular, each g(x) ∈ R3

is the center of such a cube.
If we let T (x, t) be the temperature density at the index
point x ∈ X and time t ∈ N, on the cubic grid, then the
vector which defines the temperature gradient along each
of the 6 directions i = 1 : 6 of the multi-link structure is
obtained as

ji(x, t) = Tαi(x) − T (x)
∥gαi(x) − g(x)∥2 (gαi(x) − g(x)) . (2.11)

The iteration formula, assuming the initial conditions
u(x, 0) are defined, is given by T (x, t+dt) equals to T (x, t)
plus dt

ρ(x,t)cp(x,t) times(
1

V (x)

6∑
i=1

ki(x)ji(x, t) · n(Fi(x)) + ε̇(x)V (x)
)

(2.12)

where ki(x) = k(x, αi(x)) is given as in (2.10), Fi(x), i =
1, 2, 3, 4, 5, 6 denotes the i-th face of the cube indexed
by x, accordingly to the assignment (F1, front), (F2, left),
(F3, top), (F4, rear), (F5, right), (F6, bottom) and the ex-
pression ji(x, t) · n(Fi(x)) denotes the 3D inner product
of the vector ji(x, t) and the weighted average normal
to the face Fi(x) (strictly n is a vector with the direc-
tion of the normal and magnitude of the cube face area,
hence with units m2). The weighted average normal has
to be considered because in general there is no guarantee
that the face determined by the points in Fi(x) is pla-
nar. An explicit description of the points in each Fi(x),
i = 1, . . . , 6 is presented below, for the moment we explain
how to get the average normal to a polygon with four ar-
bitrary points. Let us take the explicit example of the
face orthogonal to the direction of α1, called the first di-
rection for simplicity. If we let a1 = α1(x), a2 = α2α1(x),
a3 = α3α1(x), a5 = α5α1(x) and a6 = α6α1(x) (note that
the element a4 = α4α1(x) is equal to x, since α4 is the
reverse direction to α1). These points may be illustrated
as shown

a3(x) x

{{
a5(x) a1(x)

OO

oo //

��

a2(x)

a6(x)
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and the average normal vector, n1(x), to this face is com-
puted as

1
4

∣∣∣∣∣∣
. . . . . . .
a2 − a1
a3 − a1

∣∣∣∣∣∣+

∣∣∣∣∣∣
. . . . . . .
a3 − a1
a5 − a1

∣∣∣∣∣∣+

∣∣∣∣∣∣
. . . . . . .
a5 − a1
a6 − a1

∣∣∣∣∣∣+

∣∣∣∣∣∣
. . . . . . .
a6 − a1
a2 − a1

∣∣∣∣∣∣
(2.13)

with the cross product (aj − a1) × (ak − a1) represented
in its matrix form ∣∣∣∣∣∣

. . . . . . .
aj − a1
ak − a1

∣∣∣∣∣∣ .
An easy calculation shows that the average normal vector
orthogonal to the first direction reduces to the formula

n1 = 1
4

∣∣∣∣∣∣
. . . . . . .
a2 − a5
a3 − a6

∣∣∣∣∣∣ = 1
4(a2 − a5) × (a3 − a6)

More precisely, using g to get the spatial coordinates,
and denoting gαiαj by gij , we have

n1(x) = 1
4(g21(x) − g51(x)) × (g31(x) − g61(x)). (2.14)

In a similar way we obtain the average normal vectors
to the other faces:

n2(x) = 1
4(g42(x) − g12(x)) × (g32(x) − g62(x)) (2.15)

n3(x) = 1
4(g43(x) − g13(x)) × (g23(x) − g53(x)) (2.16)

n4(x) = 1
4(g34(x) − g64(x)) × (g24(x) − g54(x)) (2.17)

n5(x) = 1
4(g35(x) − g65(x)) × (g45(x) − g15(x)) (2.18)

n6(x) = 1
4(g26(x) − g56(x)) × (g16(x) − g46(x)) (2.19)

Using a similar technique, when the volume of the cu-
bes is not imposed, we may get an approximation to its
value, V (x), at each index element x in the grid as

1
8(∥gα1(x)−gα4(x)∥∥gα2(x)−gα5(x)∥∥gα3(x)−gα6(x)∥)

(2.20)
Before continuing and give a precise description of the
overall procedure, let us draw our attention on the source
or sink heat generation function ε̇(x) at each point x ∈ X
of the grid. As a consequence of the structure of a link,
a point x ∈ X for which αj(x) = x for some direction
j = 1 : 6, is a border element. This means that the inter-
face between our system and the outside environment can
be modelled using ε̇. Another aspect which is important
is the modelling of a conformal channel with refrigeration
liquid. Instead of simulating the fluid dynamics and how
it correlates with the heat transfer, we will assume that
at each time there is a heat source that is being extracted
on the elements from the grid which are of that type of
material.

3 The general procedure
We are now in a position to outline the general procedure
for the iterative simulation:

1. Intput Data:

(a) the input data consists on the structure of a
cubic directed link, as explained before and it
is a system (X, g, αj), with X a set of indexes,
αj : X → X the transition maps along the six
possible (oriented) directions, and g : X → R3

is the geometric realization map that associa-
tes to each element in the grid its spatial co-
ordinates.

(b) Types of material. In order to encode the in-
formation, to each different type of material
a number is associated, and refereed as an in-
dex. This mean that we will have a set, such as
for example M = {1, 2, 3, 4, 5, 6} where diffe-
rent numbers may not necessarily correspond
to different materials a priori. This is useful to
change the type of material after the process
has started without the need to reformulate
the whole iterative process. We will use, as an
example, the three materials Steel, PVC and
Water, but we will allow six indexes for the
materials in our system.

(c) Assigning the materials to the elements on
the grid. This is done with a projection map
m : X → M , which specifies the type of mate-
rial at each position on the grid.

(d) Material properties. This is an assignment
of the needed parameters to specify each
type of material. It is done with a mapping
p : M → R3×3, specifying to each material in-
dex j ∈ M , p(j) as explained on item 5 above
as well as in equations (2.6), (2.7), (2.8).

(e) The source and sink heat generator function.
This functionality will be implemented in a fu-
ture version of this work, for the moment we
are considering the theoretical structure and
its main properties.

(f) The total number of iterations, say NMax and
the time interval dt and initial temperature
T (x, t0).

2. The iterative process:

(a) Suppose the first iterative step is determined,
then we have

T (x, t + dt) = T (x, t) + dt

ρ(x, t)cp(x, t) ·

·

(
1

V (x)

6∑
i=1

K + ε̇(x, t)V (x)
)
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with K = ki(x, t)ji(x, t) · ni(x) where ρ(x, t)
and cp(x, t) are determined as in equations
(2.6) and (2.7), V (x) is determined as in (2.20),
ki(x) is given by the formula

ki(x) = 2k(x, t)k(αi(x), t)
k(x, t) + k(αi(x), t)

with k(x, t) determined by the equation (2.8).
The gradient, ji(x, t) is obtained by the for-
mula (2.11). The average normal vectors ni(x)
are independent of time (at least in a first im-
plementation where the geometry is not chan-
ging) and are given by the formulas (2.14)–
(2.19). The value of the map ˙ε(x, t) should be
defined accordingly to the physical interpreta-
tion of the problem.

3. The metric associated to the simulation. At the end
of the iterative process we measure the matrix norm
of the matrix j(x, t) and give a measure of the per-
formance of the simulation.

4 Conclusion
Conceptually, this work presents a new approach with di-
rect impact and specific practical application regarding
the heat transfer applied to the mold industry. The pro-
posed method has the great advantage of being numeri-
cally less demanding both in terms of required processing
power and in terms of processing time, being of great va-
lue for an evaluation and selection of the most promising
molds for a specific application. This approach can also
be applied in thermal mapping of 3D printing structures.
Furthermore, the notion of a multi-link permits to work
with a subset of indexes I ⊂ X thus allowing to use only
those elements which suffer some changes form one ite-
ration to the following, thus, since the subset I can be
dynamically adapted from one iteration to the following,
it gives an optimized way for the whole process from a
computational point of view.
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Abstract We recall the notion of MV-algebra and present some of its properties, that are well known, with proofs
that are not easily found in the literature. Our purpose is to have a common background in order to understand
some aspects of the interplay between MV-algebras, De Morgan algebras, Boolean algebras and the new notion of
mobi algebras which have recently been introduced by the authors. In particular, the usual derived operations on
MV-algebras seem to be relevant to a better understanding of derived operations on mobi algebras.

1 Introduction
The concept of an MV-algebra was introduced by C. C.
Chang [5], in 1958, as an axiomatization of the Lukasi-
ewicz many-valued logic (MV stands for many-valued). In
the same way as Boolean algebras stand to boolean logic,
MV-algebras stand to Lukasiewicz infinite-valued logic. A
variable in boolean propositional logic represents a {0, 1}-
valued observable, and identically transforms the output
of this observable into a truth-value. In infinite-valued
logic a variable transforms the output of a real-valued
bounded observable into a truth-value lying in the unit
real interval [0, 1]. The completeness theorem for Luka-
siewicz logic states that the rules of Modus Ponens and
substitution are sufficient to obtain all tautologies (i.e.,
all equations of the form τ = ¬0 for τ an MV-term) in
the infinite-valued calculus of Lukasiewicz starting from
a few basic tautologies (originally due to Lukasiewicz)
corresponding to the defining equations of MV-algebras.
The need for infinitely many truth-values naturally arises,
e.g., in the Rényi-Ulam game of Twenty Questions where
some of the answers may be erroneous. Here answers do
not obey classical two-valued logic. As a matter of fact,
two equal answers to the same repeated question usu-
ally give more information than a single answer. Using
Chang completeness theorem, it is possible to show that
the underlying logic of Rényi-Ulam games is Lukasiewicz
infinite-valued propositional logic (see e.g. [13]).

2 MV-algebras
Recall that an MV-algebra (see e.g. [1, 4]) is a structure
of type (2, 1, 0) which may be defined as follows.

Definition 1. A MV-algebra is a system X= (X, ·, ′, 1)
such that:

(MV1) x · (y · z) = (x · y) · z

(MV2) x · 1 = x

(MV3) x′′ = x

(MV4) x · 1′ = 1′

(MV5) (x′ · y)′ · y = (y′ · x)′ · x

A list of properties is presented next. Note that, ori-
ginally, the commutativity of the binary operation · was
included as an axiom. The proof of Property (P4) below,
showing that commutativity of · is a consequence of the
other axioms, is due to Kolařík [12].
Proposition 1. Let (X, ·, ′, 1) be a MV-algebra. It follows
that:
(P1) 1 · x = x

(P2) x′ · x = 1′

(P3) (y · x)′ · (x · y) = 1′

(P4) x · y = y · x

Proof. We begin with the proof of (P1):

1 · x = ((1 · x)′)′ (MV3)
= ((1 · x)′ · 1)′ · 1 (MV2)
= (1′ · (1 · x))′ · (1 · x) (MV5)
= ((1′ · 1) · x)′ · (1 · x) (MV1)
= (1′ · x)′ · (1 · x) (MV2)
= ((1′ · x)′ · 1) · x (MV1)
= (1′ · x)′ · x (MV2)
= (x′ · 1)′ · 1 (MV5)
= x′′ (MV2)
= x. (MV3)

Using (P1), the complement property (P2) is easily pro-
ved:

x′ · x = (1 · x)′ · x (P1)
= (1′′ · x)′ · x (MV3)
= (x′ · 1′)′ · 1′ (MV5)
= 1′′ · 1′ (MV4)
= 1 · 1′ (MV3)
= 1′. (MV4)
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3 DERIVED DISTRIBUTIVE LATTICE

Now, we can use (P2) to prove (P3):

(y · x)′ · (x · y) = ((y · x)′ · x) · y (MV1)
= ((y′′ · x)′ · x) · y (MV3)
= ((x′ · y′)′ · y′) · y (MV5)
= (x′ · y′)′ · (y′ · y) (MV1)
= (x′ · y′)′ · 1′ (P2)
= 1′. (MV4)

Properties (P1) and (P3) are used to prove (P4):

x · y = 1 · (x · y) (P1)
= (1′)′ · (x · y) (MV3)
= ((y · x)′ · (x · y))′ · (x · y) (P3)
= ((x · y)′ · (y · x))′ · (y · x) (MV5)
= 1′′ · (y · x) (P3)
= y · x. (MV3), (P1)

3 Derived Distributive Lattice

It is well known that a distributive lattice structure is
obtained from an MV-algebra through a set of derived
operations as explained in the following propositions.

Proposition 2. Let (X, ·, ′, 1) be a MV-algebra. For x△y =
(x′ · y)′ · y, the following properties hold:

(P5) x △ y = y △ x

(P6) x △ x = x

(P7) x △ (y △ z) = (x △ y) △ z

(P8) x △ 1 = x

(P9) x △ 1′ = 1′

Proof. Commutativity (P5) is just a rewriting of
(MV5). Idempotency (P6) is easily proved:

x △ x = (x′ · x)′ · x

= (1′)′ · x (P2)
= 1 · x (MV3)
= x. (P1)

Associativity (P7) can be proved as follows:

x △ (y △ z) = x △ (z △ y) (P5)
= (x′ · [(z′ · y)′ · y])′ · [(z′ · y)′ · y]
= (x′ · [y · (z′ · y)′])′ · [(z′ · y)′ · y] (P4)
= [(x′ · y) · (z′ · y)′]′ · (z′ · y)′ · y (MV1)
= [(x′ · y)′′ · (z′ · y)′]′ · (z′ · y)′ · y (MV3)
= [(z′ · y)′′ · (x′ · y)′]′ · (x′ · y)′ · y (MV5)
= [(z′ · y) · (x′ · y)′]′ · (x′ · y)′ · y (MV3)
= [z′ · y · (x′ · y)′]′ · (x′ · y)′ · y (MV1)
= [z′ · (x′ · y)′ · y]′ · (x′ · y)′ · y (P4)
= [z′ · (x △ y)]′ · (x △ y)
= z △ (x △ y)
= (x △ y) △ z. (P5)

For unit relation (P8), we have:

x △ 1 = (x′ · 1)′ · 1
= x′′ (MV2)
= x. (MV3)

Finally, here is the proof of (P9):

x △ 1′ = (x′ · 1′)′ · 1′

= 1′ (MV4)

Now we need to introduce the dual operation.

Proposition 3. Let (X, ·, ′, 1) be a MV-algebra. For x▽y =
(y′ △ x′)′, the following properties hold:

(P10) x △ y = (y′ ▽ x′)′

(P11) x ▽ y = y ▽ x

(P12) x ▽ x = x

(P13) x ▽ (y ▽ z) = (x ▽ y) ▽ z

(P14) 1′ ▽ x = x

(P15) 1 ▽ x = 1

Proof. Because ′ is an involution, there is a duality
between △ and ▽:

(y′ ▽ x′)′ = (x′′ △ y′′)′′

= x △ y. (MV3)

Then, of course, (P11), (P12), (P13), (P14) and (P15)
follow from Proposition 2.

Absorption rules connecting △ and ▽ are easily pro-
ved.

Proposition 4. Let (X, ·, ′, 1) be a MV-algebra. The fol-
lowing properties hold:

(P16) (x △ y) · x′ = 1′
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(P17) x ▽ (x △ y) = x

(P18) (y ▽ x) △ x = x

Proof. Property (P16) simplifies the proof of the ab-
sorption rules (P17) and (P18):

(x △ y) · x′ = ((x′ · y)′ · y) · x′

= (x′ · y)′ · (y · x′) (MV1)
= 1′. (P3)

Then

x ▽ (x △ y) = ((x △ y)′ △ x′)′

= (((x △ y) · x′)′ · x′)′

= (1′′ · x′)′ (P16)
= x, (MV3), (P1)

and

(y ▽ x) △ x = (x′ △ y′)′ △ x

= ((x′ △ y′) · x)′ · x

= 1′′ · x (MV3), (P16)
= x. (MV3), (P1)

Distributivity of △ and ▽ over each other can also be
proved.
Proposition 5. Let (X, ·, ′, 1) be a MV-algebra. Then:

(P19) x ▽ (y △ z) = (x ▽ y) △ (x ▽ z)
x △ (y ▽ z) = (x △ y) ▽ (x △ z).

According to [2], the next proposition is folklore of the
theory of MV-algebras.
Proposition 6. Let X = (X; ·, ′, 1) be a MV-algebra. De-
fine x ≤ y if and only if x · y′ = 1′. Then (X; ≤) is a dis-
tributive lattice with the least element 1′ and the greatest
element 1 in which x∧y = (x′ ·y)′ ·y and x∨y = (y′ ∧x′)′.

Proof. Cited proof is [4].
The following results are related.

Proposition 7. [4] Let (X, ·, ′, 1) be a MV-algebra. Then:

(P20) x · (y ▽ z) = (x · y) ▽ (x · z)
x ◦ (y △ z) = (x ◦ y) △ (x ◦ z).

Where x ◦ y = (y′ · x′)′ is the dual operation of ·.

Some properties of the dual operation ◦ are presented.
Proposition 8. Let (X, ·, ′, 1) be a MV-algebra. For x◦y =
(y′ · x′)′, the following properties hold:

(P21) x · y = (y′ ◦ x′)′

(P22) x ◦ y = y ◦ x

(P23) x ◦ (y ◦ z) = (x ◦ y) ◦ z

(P24) 1′ ◦ x = x

(P25) 1 ◦ x = 1

4 Relation with Mobi Algebras
Consider a system (A, p, 0, 1) where p : A × A × A → A is
a ternary operation satisfying the following axioms:

(T1) p(0, a, 1) = a

(T2) p(a, b, a) = a

(T3) p(a, p(b1, b2, b3), c) = p(p(a, b1, c), b2, p(a, b3, c))

(T4) p(a, 0, b) = a = p(b, 1, a).

This set of axioms was considered in [5, 6] for a cha-
racterization of Boolean algebras and it is related with
the notion of mobi algebras introduced in [11] (see also
[7, 8, 9, 10]).

It is interesting to observe the similarity between the
derived operations from an MV-algebra, which give rise
to a distributive lattice and hence can be specialized to
De Morgan algebras or Boolean algebras, with the deri-
ved operations obtained form the ternary operation p as
above, namely the ones ā = p(1, a, 0), a ·b = p(0, a, b) and
a ◦ b = p(a, b, 1), as considered e.g. in [8]. Nevertheless,
other possibilities of deriving binary operations from the
ternary term p, such as p(a, b, b) or p(a, a, b) seem to be
relevant as well. This will be explored in future work.
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Abstract The main goal of this paper is to provide an efficient and high level procedure to compute morphological
operations for regions on the complex plane. The concept of a complex link is used to model the boundary of a
region. The heart of the procedure lies on the partition of the complex plane, that is indexed by the integers and
is obtained by extending the winding number of a curve (in this case the geometric realization of a link) from its
interior points to the points in its boundary. Once this partition is obtained, it provides a straightforward method
to compute intersections, unions, symmetric differences, dilations, contractions, and even more generally, it permits
the computation of non-constant offsets defined independently at each point on the boundary of the region. This
possibility is of particular importance in 3D printing with layer by layer fabrication, as well as in the generation of
conformal cooling channels that are relevant to the mould industry.

1 Introduction

Every planar region gives rise to a closed and oriented
simple curve, namely its boundary. This process can be
reversed and every simple planar curve determines a well
defined planar region. However, when the planar curve is
not simple (i.e. has self intersections) there is an ambi-
guity in defining the planar region. This problem is sol-
ved by using a link structure [1] to model a closed and
oriented planar curve. The structure of a link has some
desirable properties which are suitable for computational
implementations. In particular it gives rise to algorithms
which provide mathematical consistency. In this paper
we describe a procedure that can be used for resolving
ambiguous regions on the plane. It assigns a partition of
the plane defined by non-simple planar curves to every
link structure. This procedure has particular cases which
can be used in computing offsets and other morphologi-
cal operations, such as union, intersection or symmetric
difference.

Regions on the complex plane which are defined by a
closed and oriented planer curve are identified with their
boundary curve. When the curve is simple the region is
obtained without any ambiguity, however, when the curve
is not simple there is possibly an ambiguity in determi-
ning the region. This is a real problem since, for example,
the offset of a simple curve is not necessarily a simple
curve. And yet, the offset of a region should again be
a region. This creates the problem of resolving ambigui-
ties in regions which are defined as having the boundary
of a not necessarily simple curve. The notion of a link
[1] is used as a model for a continuous closed and orien-
ted planar curve. We call it a complex-link and identify
the euclidean plane with the complex numbers. The no-

tion of a complex-link, as a mathematical structure (con-
sisting of an indexing set, an endomap of indexes and
a realization map into the complex numbers, see [1] for
more details) has certain desirable properties. For exam-
ple, it is an efficient way of encoding a planar curve in
a clear and concise way (see the editorial article A study
of the letter A at the opening of this newsletter). It is
suitable for practical computational calculations as well
as to produce mathematical consistency. On the top of
the mathematical structure of a complex-link, we derive
a general procedure that assigns to every such structure
a classifying map. This map creates a partitioning of the
complex plane into a family of regions indexed by the
integers. The region labeled by 0 is unlimited, a region
labeled by n + 1 is contained into a region labeled by n.
In particular, the partition can be transferred to the in-
dexing sets and the ambiguity is resolved by choosing the
appropriate indexing family. For example, in the case of
offsets, the resulting region is the one whose boundary is
the indexing family indexed by 0, if the region is limited,
or -1 is the complement of the region is limited. Applica-
tions to other morphological operations are also derivable
from this general procedure. For instance, the procedure
outlined in [2] is covered by this approach.

Let us see some preliminary details on how to extract
a link structure from a planar curve and how the notion
of winding number is transferred to that structure.

Let γ : [0, 1] → C be a closed curve on the complex
plane and suppose that we are given a sequence of orde-
red real numbers on the unit interval, say 0 ≤ t1 ≤ t2 ≤
. . . ≤ tn ≤ 1. We may consider a discretisation for γ as:

1. A = {1, 2, . . . , n}

2. φ(k) = k + 1 if k < n, and φ(n) = 1
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2 SOME USEFUL OPERATIONS ON THE STRUCTURE OF A LINK

3. g(k) = γ(tk)
If z ∈ C is not of the form z = g(k) for some k ∈ A,

we define the winding number w(z) as:

w(z) = 1
2π

∑
k∈A

∠

(
g(φ(k)) − z

g(k) − z

)
(1.1)

with −π < ∠(z) ≤ π the usual phase angle of a complex
number z ∈ C measured in radians. It will be important
to understand the behaviour of the formula above when
z is of the form g(k) + t(g(φ(k)) − g(k)) for some k ∈ A
and t ∈]0, 1[. For that reason we present here three sim-
ple examples which are at the same time easy to compute
by hand and clearly illustrate the formula above for the
winding number of a point which is not coincident with
a vertex used in the discretisation of a curve γ.

Let us take the simple example of the unit circle cen-
tred at zero. So, we take the curve γ : [0, 1] → C, defi-
ned as γ(t) = eit2π , with i the imaginary unit and
t ∈ [0, 1]. Let us now consider three different discreti-
zations and analyse the winding number w(0) for each
one. In each case we consider a discretization with only
three elements with the set of indexes A = {1, 2, 3}. As
above, we also consider the re-indexing map φ : A → A
defined as φ(1) = 2, φ(2) = 3 and φ(3) = 1. Then, for
any 0 ≤ t1 < t2 < t3 ≤ 1 we have g(k) = eitk2π and we
may compute the winding number at z = 0. Recall that
the formula is

w(0) = 1
2π

∑
k∈A

∠

(
g(φ(k))

g(k)

)
and it will depend on the discretization we choose:

1. if we take t1 = 1
8 , t2 = 1

2 and t3 = 7
8 , then we

compute w(0) as
1

2π

(
∠
(

ei( 1
2 − 1

8 )2π
)

+ ∠
(

ei( 7
8 − 1

2 )2π
)

+ ∠
(

ei( 1
8 − 7

8 )2π
))

which simplifies to
1

2π

(
3
4π + 3

4π − 3
2π

)
and we get w(0) = 1. The following diagram illus-
trates the situation.

1+i√
2

ww
−1

''

0

??

oo

��
1−i√

2

OO

2. if we take t1 = 1
4 , t2 = 1

2 and t3 = 3
4 , then we

compute w(0) as
1

2π

(
∠
(

ei( 1
2 − 1

4 )2π
)

+ ∠
(

ei( 3
4 − 1

2 )2π
)

+ ∠
(

ei( 1
4 − 3

4 )2π
))

which simplifies to

1
2π

(π

2 + π

2 + ∠
(
e−iπ

))
and since ∠

(
e−iπ

)
= π we get w(0) = 1. The fol-

lowing diagram illustrates the situation.

i

}}
−1

!!

0

OO

oo

��
−i

OO

We observe that if the definition of ∠ would be such
that −π ≤ ∠(z) < π then we would have w(0) = 0.

3. if we take t1 = 3
8 , t2 = 1

2 and t3 = 5
8 , then we

compute w(0) as

1
2π

(
∠
(

ei( 1
2 − 3

8 )2π
)

+ ∠
(

ei( 5
8 − 1

2 )2π
)

+ ∠
(

ei( 3
8 − 5

8 )2π
))

which simplifies to

1
2π

(π

4 + π

4 − π

2

)
and we get w(0) = 0. The following diagram illus-
trates the situation.

−1+i√
2

}}
−1

!!

0

``

oo

~~
−1−i√

2

OO

2 Some useful operations on the struc-
ture of a link

The notion of a link was introduced in [1] and it is a gene-
ralization of a directed graph. A link is a triple (A, g, φ)
where A is a finite set, called the set of indexes (and so
the elements in A are called the indexes of the link), a
map g : A → B whose domain is A, and admitting any
set B as codomain (usually it will be a structured set, for
example we will say real link when B is the set of the re-
als and comlex-link when B = C, the complex numbers,
which will also be identified with the plane, so that we
may also say planar-link), and φ : A → A is a bijection
on the set of indexes (in some cases we do not require it
to be a bijection, however, that will not be the case in
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2 SOME USEFUL OPERATIONS ON THE STRUCTURE OF A LINK

this paper). Every link gives rise to a directed graph of
the form

A
d //
c
// B (2.1)

where d = g and c = gφ. See [1] for more details.
While comparing (1.1) with the standard formula in

complex analysis for the winding number [4] of a curve γ
around a base point z as being

w(z) = 1
2πi

∫ 1

0

γ′(t)
γ(t) − z

dt (2.2)

it becomes clearer how the structure of a complex-link
(A, g, φ) is suitable as a model for an oriented curve in
the plane.

The purpose of the following subsections is to deve-
lop further how the abstract mathematical structure of a
complex-link is a model to a parameterized planar curve
while detailing a couple of useful operations.

2.1 The concrete structure of a complex link
Let us recall that a complex or planar-link is a triple
(A, g, φ) where A is a set (of indexes), φ : A → A is a
re-indexing map (usually rquired to be a bijection) and
g : A → C is a map assigning to each index from the set
A its geometrical realization as a complex number.

Every planar closed curve, that is, a continuous map

u : [0, 1] → R2; u(t) = (u1(t), u2(t))

with u(0) = u(1), together with an ordered sequence of
real numbers in the unit interval, say 0 ≤ t1 ≤ t2 ≤ . . . ≤
tn ≤ 1 , gives rise to a link structure as follows:

1. A = {1, 2, . . . , n}

2. φ(i) = i + 1 if i < n, and φ(n) = 1

3. g(i) = u1(ti) +
√

−1u2(ti)
For a simple concrete example let us consider the grid

off complex numbers pictured as points in the plane as
displayed in Figure 1 which can be represented by a link
structure as displayed in Table 1.

−2 + 2i −1 + 2i

��

1 + 2i

zz

2 + 2i

−2

��

−1

$$

0 1

dd

2

\\

−2 − 2i −1 − 2i

::

1 − 2i

BB

2 − 2i
Figure 1: Picturing the link structure displayed in Table

1 as a directed graph in the complex plane

x ∈ A g(x) φ(x)
1 1 2
2 −1 + 2i 3
3 −2 4
4 −1 − 2i 1
5 2 6
6 1 + 2i 7
7 −1 8
8 1 − 2i 5

Table 1: Example of a link structure whose geometric
realization is illustrated in Figure 1

The following subsection illustrates the process of re-
solving self intersections on a complex link.

2.2 Self intersections Algorithm

Given a link, say (A, g, φ), the self-intersections procedure
returns a new link with the following property: if any two
indexes have geometric realization direction vectors that
intersect each other, then their intersection is the image of
some index. This procedure requires the creation of new
indexes every time an intersection occurs.

For example, the link depicted in Table 1 and illustra-
ted in Figure 1 will return a new link with new indexes,
as shown in Table 2 and illustrated in Figure 2.

The link-intersection procedure finds intersections,
adds new vertices, and returns a new link structure
(A, g, φ) with the property that if two edges intersect then
their intersection occurs on the starting points or the end
points of the given edges.

−2 + 2i −1 + 2i

��

1 + 2i

{{

2 + 2i

i

zz

dd

−2

��

−1

$$

0 1

cc

2

[[

−i

##

;;

−2 − 2i −1 − 2i

::

1 − 2i

CC

2 − 2i

Figure 2: The result of performing the self-intersections
procedure on the link illustrated in Figure 1
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2 SOME USEFUL OPERATIONS ON THE STRUCTURE OF A LINK

x ∈ A g(x) φ(x)
(1, 0) 1 (1, 0.5)
(2, 0) −1 + 2i (3, 0)
(3, 0) −2 (4, 0)
(4, 0) −1 − 2i (4, 0.5)
(5, 0) 2 (6, 0)
(6, 0) 1 + 2i (6, 0.5)
(7, 0) −1 (7, 0.5)
(8, 0) 1 − 2i (5, 0)

(1, 0.5) i (2, 0)
(4, 0.5) −i (1, 0)
(6, 0.5) i (7, 0)
(7, 0.5) −i (8, 0)

Table 2: The result of performing the self-intersections
procedure on the link of Table 1

We will now define some useful procedures that can
be performed into a link structure, namely the reduce al-
gorithm, which removes the indexes that are associated
with a zero length edge when considered as a directed
graph. And later we formalize the algorithm for self in-
tersections.

2.3 Reduce

Given a link, say (A, g, φ), the reduce procedure returns a
new link where each index has non zero geometric realiza-
tion direction. That means, for every x ∈ A, the vector in
the plane (or the complex number representing it, recall
that we are identifying the plane with the set of complex
numbers) dir(x) = gφ(x) − g(x) is non zero.

The implementation and detailed description of this
procedure is not difficult to achieve and it relies on the
fact that the set of indices A is a finite set and the map
φ is a bijection. It is possible to consider the case when A
is infinite but that would create unnecessary restrictions
and it is not the purpose of this paper.

The general procedure is as follows. Let (A, g, φ) be a
complex link, that is, for the purpose of this paper A is
a finite set and φ is a permutation of A. We define the
reduced link, say (A′, g′, φ′) as follows:

A′ = {x ∈ A | dir(x) ̸= 0}
g′(x) = g(x), ∀x ∈ A′φ′(x) = φk(x)

with k ≥ 1 is the least natural number for which φk(x) ∈
A′ (it is well defined because A is finite and φ is a bijec-
tion).

A simple example may be given as follows. The link
structure (A, g, φ) is described in the table bellow, where
a = (0, 0) and b = (1, 0), or, since we identify the complex
plane C with the Cartesian plane R2, we can also think
of complex numbers, a = 0 and b = 1.

A g φ
1 a 2
2 b 3
3 a 1
4 a 5
5 a 6
6 a 4

In this case, the reduce algorithm would return a new
link, say (A′, g′, φ′), where A′ = {1, 2}, φ′(1) = φ(1) = 2
and φ′(2) = φ2(2) = 1. Clearly, the map g′ is always the
restriction of the map g to the subset A′ ⊆ A.

The following procedure is to ensure that all the self
intersections on the realization of a complex or planar link
occur in a vertex which is indexed by some index in the
set of indexes. For instance, that is not the case in the
example pictured in Figure 1.

2.4 Self intersections
Given a link, say (A, g, φ), the self-intersections procedure
returns a new link with the following property: if any two
indexes have geometric realization direction vectors that
intersect each other, then their intersection is the image of
some index. This procedure requires the creation of new
indexes every time an intersection occurs.

For example, the link depicted in Table 1 and illustra-
ted in Figure 1 will return a new link with new indexes,
as shown in Table 2 and illustrated in Figure 2.

The link-intersection procedure finds intersections,
adds new vertices, and returns a new link structure
(A, g, φ) with the property that if two edges intersect then
their intersection occurs on the starting points or the end
points of the given edges.

The procedure may be defined as follows.
Let us suppose we are given a link (A, g, φ) with no

zero length edges, that is, dir(x) ̸= 0, for all x ∈ A. If
that is not the case then we perform the reduce transfor-
mation.

Denote by S the set of pairs (a, b) ∈ A × A whose
associated edges (g(a), gφ(a)) and (g(b), gφ(b)) are not
parallel (but we allow them to be coincident). This me-
ans that two possibilities may occur:

1. the two edges (g(a), gφ(a)) and (g(b), gφ(b)) are
colinear and hence there exist unique real num-
bers s and t such that g(a) = g(b) + t dir(b) and
g(b) = g(a) + t dir(a)

2. the two edges are not parallel nor colinear and hence
there exist unique real numbers s and t such that

g(a) + t dir(a) = g(b) + s dir(b)

Recall that dir(a) = gφ(a) − g(a).
The previous discussion shows that we can define two

maps,
s, t : S ⊂ A × A → R
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3 THE MAIN PROCEDURE

defined as follows. If −→a = (g(a), gφ(a)) and −→
b =

(g(b), gφ(b)) are not parallel nor colinear then s(a, b) and
t(a, b) are the unique real numbers such that

g(a) + t(a, b) dir(a) = g(b) + s(a, b) dir(b);

if −→a and −→
b are colinear then s(a, b) and t(a, b) are the

unique real numbers such that

g(a) = g(b) + s(a, b) dir(b)

and
g(b) = g(a) + t(a, b) dir(a)

This two functions are then used to construct the new
set of indexes, as follows.

The new set of indexes resulting from the self-
intersection procedure is

A = {(a, u) ∈ A×[0, 1[| ∃b ∈ A, u = t(a, b), s(a, b) ∈ [0, 1[)}

In other words, we collect all the indexes of the form (a, u)
where a ∈ A and 0 ≤ u < 1 for which there exist an index
b ∈ B whose geometric edge, −→

b , intersects the edge −→a
at the point g(a) + u dir(a). If we drop the requirements
that t(a, b) and s(a, b) need to be non-negative numbers
strictly smaller than 1, then we would be considering in-
tersections outside the length of the edges but still on
their supporting lines. That would not give the desired
result of identifying self intersections between the edges.

The previous construction determines the new set of
indexes. We now have to define a new permutation and to
give a geometric realization to the new indexes that have
been inserted. Clearly, we will have the pairs of the form
(a, 0) in A as copies of the original indexes in the set A.
Moreover, since the set is finite, we may organize it, for
each a ∈ A, as a sequence

(a, 0), (a, u1), (a, u2), . . . , (a, un(a))

with 0 < u1 < . . . un(a) < 1, thus collecting all the in-
dexes (a, u), for a fixed a and ordered them by u, with
n(a) counting their total number. This ordering allow us
to define a geometric realization and a permutation of the
indexes. The geometric realization is given by the formula

g(a, u) = g(a) + u dir(a)

while the rearrangement of the indexes is given by the
formula

φ(a, ui) = (a, ui+1)

if i < n(a), and φ(a, un(a)) = (φ(a), 0) otherwise.
As an example, in Table 2 we present the resulting

link that is obtained by performing the self-intersections
procedure on the link described in Table 1. Figure 2 shows
its geometric realization.

2.5 Cyclic ordering around a vertex
Given a link (A, g, φ), this operation produces a bijec-
tive map θ : A + A → A + A such that θ(x, i) is the pair
(y, j) ∈ A + A such that the angle of (y, j) is greater or
equal than the angle of (x, i) and there is no other pair
(z, k) whose angle is in-between. We are using the nota-
tion A + A to denote the set consisting of two copies of
A, specificaly build as A + A = {(x, i) | x ∈ A, i = −1, 1}
and by the angle of a pair (x, i) ∈ A + A we mean the
angle of the complex number dir(x) if i = 1 and − dir(x)
if x = −1. Recall that dir(x) = gφ(x) − g(x).

A pseudo code implementation for this procedure is
perhaps the best way to illustrate it. If a link (A, g, φ) is
represented into a computer system such as Matlab, that
is, g is a vector of complex numbers, the indexes are the
numbers from 1 to the length of g, and φ is a vector with
a permutation on the numbers 1 to length of g, then, the
desired permutation θ, can be obtained by the following
procedure:

% g a column vector of complex numbers of length n
% phi a column permutation on the numbers 1:n
dir=g(phi)-g;
M=[[g;g],[angle([dir;-dir])]];
[~,theta]=sortrows(M);
% theta is the desired permutation
for the cyclic ordering

3 The main procedure
We are now in position to outline the main procedure
that associates a partition of the complex plane to every
link structure (A, g, φ). This partition is represented as a
map w : C → Z. In this way each integer k gives a subset
of the plane by looking at w−1(k). There will be exactly
one unbounded region which will be associated with 0.

Let us now see how to define the map w. If z ∈ C is
not in the image of the piece-wise linear curve determined
by the link structure, then

w(z) = 1
2π

∑
x∈A

∠

(
gφ(x) − z

g(x) − z

)
(3.1)

otherwise, that is, if there exist x ∈ A and t ∈ [0, 1[ such
that

z = g(x) + t dir x (3.2)
then, w(z) is defined as f(x) with f : A → Z defined as
detailed in the following procedure.

3.1 Procedure to define the map f

Start with an arbitrary link structure (A, g, φ). Take the
resulting link structure which is obtained after applying
the reduce operation and the self-intersections operation
as explained above. This means that the resulting link
(A, g, φ) has no zero length vectors dir(x) and all self in-
tersections occur in g(A) ⊂ C. Then we construct the
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bijection θ : A + A → A + A as explained above and de-
fine a map τ : A + A → Z with the formula

τ(x, i) =

 1 if i = 1 and signal θ(x, i) = 1
−1 if i = −1 and signal θ(x, i) = −1
0 otherwise

(3.3)
with signal having the natural meaning of signal(x, i) = i,
for any (x, i) ∈ A + A.

The next step is to form a directed graph whose
set of vertices, V , is obtained by the quotient map
p : A + A → V , with q the coequalizer of θ and the iden-
tity map on A + A. In other words, the vertices are the
orbits of the map θ. From here we can create the di-
rected graph d, c : A → V defined by d(x) = p(x, 1) and
c(x) = p(x, −1).

Next we compute the set of connected components of
the directed graph, denoted by Q, which is obtained as
the coequalizer of the two maps d and c. For simplicity,
let us suppose that there are exactly k connected compo-
nents and that we have Q = {1, 2, . . . , k}. Then, for each
element in Q, let us suppose there is a given choice of ele-
ments x1, x2, . . . , xk in A+A each one of which belonging
to the respective connected component. We will see later
on how to make this choice in an appropriated way. For
the moment we assume we have a set, let us call it S0
with the given elements. Let us also supose that a map
f : S0 → Z is given (typically f will be zero everywhere).
Having S0 we define S+

0 = {(x, −i) | (x, i) ∈ S0}.
The given map f : S0 → Z is extended to S1 so that
f(x, i) = f(x, −i). The next step is to define a new set

S1 = {θn(x, i) | n ∈ N, (x, i) ∈ S+
0 } (3.4)

extending the map f from S+
0 to S1 via the formula

fθn(x, i) = f(x, i) +
n∑

j=1
τθj(x, i), (3.5)

enlarging the set S1 to S+
1 = {(x, −i) | (x, i) ∈ S+

0 } and
letting f to be defined over S+

1 so that f(x, i) = f(x, −i).
We then repeat the same process obtaining, for k =

2, 3, . . ., successively Sk = {θn(x, i) | n ∈ N, (x, i) ∈
S+

k−1}, then extending the definition of f as in equation
3.5, enlarging the set Sk to S+

k as above and allowing f
to be defined over S+

k .
The process stops when S+

k = A + A. At that stage,
and since the map f has the property that f(x, i) =
f(x − i), then we may consider it as a map f : A → Z.

This gives us the desired definition for w(z) when
z = tgφ(x)+(1−t)g(x) for some x ∈ A and some t ∈ [0, 1[,
which is simply given by w(z) = f(x).

It remained to see how to perform the appropriate
choice of the values in the set S0, one for each connected
component in Q. For simplicity let us assume that the
directed graph only had one connected component. The
case when there are more is treated in the same way.

3.2 The choice of the initial points from each
connected component

In this subsection we explain how to obtain a initial point
for each connected component and what is the value of it
by the map f on the previous subsection.

We will first give the procedure to find the initial point
of a given connected component and then we will explain
the meaning of each step.

Let us suppose we have a complex link (g, φ) with
one connected component. Moreover, let us assume that
θ : A + A → A + A is its cyclic ordering around each ver-
tex. Furthermore, let us assume that the complex plane
is equipped with its lexicographic order, that is, z1 ≤ z2
if and only if |z1| < |z2| or if |z1| = |z2| and ∠z1 ≤ ∠z2:

1. find the minimum and maximum values of g(x) for
all x ∈ A,

2. choose x0 ∈ X such that g(x0) is a minimum
and consider all possible (xj , ij) ∈ A + A, with
j = 1, . . . n such that g(xj) is maximum,

3. we choose the appropriate (xj , ij) ∈ A + A with
j = 1, . . . n, such that g(xj) is maximum, as being
such that ∠(xj , ij) − ∠(g(xj) − g(x0)) is minimal.

4. if (x, i) ∈ A + A is such that g(x) is maximum and
angle(x, i)−angle(g(x)−g(x0)) is minimal amongst
all the pairs (xj , ij) such that g(xj) is maximal,
then it is the chosen element for the given connec-
ted component and moreover, f(x, i) = 0 if i = 1
and f(x, i) = −1 if i = −1.

4 Possible applications of the proce-
dure

Having the procedure described above we may find sim-
ple and computationally efficient ways of working with
offsets for arbitrary regions on the plane, as well as many
other logical operations like union, intersection, symme-
tric difference or complement.

4.1 Offsets
Given a simply region on the complex plane (that is, one
whose boundary determines a simple oriented curve) we
can make an arbitrary discretization of it thus obtaining
a link structure. By applying an offset to each edge (this
can be done in two different ways, either offseting the ver-
tices and letting the edges to follow, or to offset the edges,
creating thus new connecting edges between the offsetted
ones). In either case we obtain a new link structure. To
thus link structure we associate the map f as explained in
the previous section. The result of the offset is obtained
by taking the inverse image of 0 ∈ Z.
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4.2 Union, intersection and symmetric diffe-
rence

Suppose (A1, g1, φ1) and (A2, g2, φ2) are two link struc-
tures representing two regions on the plane. Then we
may form a new link (A1 + A2, [g1, g2], φ1 + φ2) and ap-
plying the process described above to it we get the map
f : A1 + A2 → Z. The map f induces the map w which
is defined for all the complex plane. In particular we get
the results obtained in [2].
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