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Matemática: beleza e harmonia, utilidade?

Titanium ring with Euler’s iden-
tity, two grooves, and raw silk fi-
nish. Produced by Exotica, Exo-
tica Jewelry and TitaniumRingsFo-
rever.com

Na recensão de José Carlos Santos, publicada na
Gazeta de Matemática (no154, 2008, pp. 30–34),
sobre o livro Apologia de um matemático, de G.
H. Hardy, pode ler-se que a Apologia de um ma-
temático é a tradução para português do livro
A mathematician’s apology, de Godfrey Harold
Hardy (1887–1947), originalmente publicado em
1940. [...]
Para Hardy, todo o valor de um resultado mate-
mático é interno à própria matemática, ou seja, é
independente das suas eventuais aplicações. Ou,
nas palavras de Hardy, «não é possível justificar a
vida de qualquer matemático profissional genuíno
com base na ‘utilidade’ do seu trabalho». E como
se determina o valor de um trabalho matemático?
Parte da resposta está contida numa das frases
mais citadas do livro:

A beleza é o primeiro teste:
não há lugar perene no mundo para
matemática feia.

É muitas vezes referida esta visão de Hardy da inutilidade da matemática pura e do
baixo apreço que tem pelas suas aplicações. Mas deve-se realçar que Hardy tem esta
visão não só da matemática mas, mais geralmente, da actividade científica em geral.
Por exemplo, ele escreve:
É [. . . ] espantoso verificar o escasso valor prático que o conhecimento científico tem
para as pessoas comuns, o carácter enfadonho e banal do que o tem, e como o seu valor
parece variar em proporção inversa à da sua suposta utilidade.

O texto completo encontra-se em: http://www.fc.up.pt/mp/jcsantos/Hardy.html.

Um exemplo de beleza matemática, o qual reflecte também a sua harmonia, e apresen-
tando talvez uma certa inutilidade, é a chamada identidade de Euler

eiπ + 1 = 0.

Nesta equação podemos encontrar cinco das constantes mais conhecidas em matemá-
tica. O número 0, elemento neutro da adição e absorvente da multiplicação, a unidade
1, elemento neutro da multiplicação, o número π, que representa a razão entre o pe-
rímetro e o diâmetro de uma circunferência, a constante e, também desiganda por
número de Euler (lê-se Óiler), ou base do logaritmo natural, é o único número real
positivo para o qual ∫ e

1

1

t
dt = 1.

A constante i é a unidade imaginária, não é um número real mas interage com os
números reais através da relação i2 = −1.
Não deixa portanto de ser extraordinário como é que estas cinco constantes, aparente-
mente de natureza tão distinta, se podem combinar numa única fórmula.
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Star trail photography. Capturing the Earth’s rotation.
http://greeksky.gr/nightskyphotography/night-sky-photography-star-trails/

A ideia de que a identidade de Euler, eiπ + 1 = 0, é inútil, expressa na página de rosto deste número, é,
em boa verdade, apenas provocatória. Na realidade a generalização desta identidade, também conhecida
por fórmula de Euler,

eiθ = cos(θ) + i sin θ

tem como consequência a importante observação de que rotação complexa, isto é, a aplicação que a cada
número complexo z associa o número complexo zeiθ, corresponde a uma rotação no sentido anti-horário
do plano complexo em torno da origem por um ângulo de θ radianos. O que claramente tem uma certa
utilidade.
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A Bolha de Carbono e Desenvolvimento (In)Sustentável

by CARLOS OLIVEIRA AUGUSTO

CEO da FACTOR4Sustainability e Investigador do CDRSP
E-mail: carlos.oliveira@factor4sustainability.com

Artigo de opinião

We’re not going to be able to burn it all

Barak Obama, 2014

A discussão — não só fascinante, mas também rele-
vante para o nosso futuro — respeitante à designada Car-
bon Bubble não parece estar a passar devidamente para a
opinião pública, mesmo a usualmente mais bem infor-
mada.

O conceito da “Bolha de Carbono” foi introduzido pelo
Carbon Tracker Iniciative, um think-tank dedicado à aná-
lise das consequências e riscos associados ao mercado de
capitais na transição ordenada para uma economia de
baixo carbono.

Neste contexto, e no pressuposto que o incremento
da temperatura relacionada com o Aquecimento Global
não deverá exceder +2oC até 2050, coloca-se a questão
de saber qual a quantidade de combustíveis fósseis que
(ainda) poderá ser utilizada.

As estimativas apontam para um valor total de emis-
sões derivadas da combustão de carvão, petróleo e gás
natural de 2,795 GtCO2, contra apenas as 565 GtCO2

permitidas pelas restrições decorrentes dos compromis-
sos internacionais assumidos, ou seja, cerca de 80% das
reservas conhecidas de energia fóssil não poderão ser uti-
lizadas (unburned), sob risco de se ultrapassar o limite
estabelecido para o aumento de temperatura.

De acordo com esta perspetiva, as empresas do setor
petrolífero estarão, portanto, potencialmente sobrevalo-
rizadas em cerca de 80%, originando os chamados “ati-
vos improdutivos” (stranded assets), o que representaria
um risco elevado para os investidores institucionais, tais
como fundos de pensões e seguradoras.

Apesar da evidência, da pressão dos investidores e da
evolução tecnológica que permite atingir cada vez mais
elevados patamares de eficiência para as energias reno-
váveis, aparentemente, tudo segue igual. Parece que a
“bubble” não merece a atenção devida nos board-rooms
das multinacionais petrolíferas, tendo em conta os últi-
mos desenvolvimentos do setor.

A Agencia Internacional de Energia (IEA) prevê um
aumento de 30% da procura global de energia no pe-
ríodo entre 2013 a 2035, sendo que a quota global es-
timada das energias fósseis, mantendo-se o "business as
usual", será ainda de 76% no final desse período, muito
por causa das necessidades energéticas das economias
emergentes.

Neste cenário, o aumento previsto da temperatura
global por causas antropogénicas passa a ser de 3.6oC o
que é inviável, tendo em conta o acima mencionado.

Como agir de modo a atuar de modo eficaz e atempa-
damente, de forma a mitigar as naturais (e catastróficas)
consequências? Certamente, alinhando todas as partes
interessadas de modo a desenhar uma estratégia global
de mitigação das Alterações Climáticas, o que não tem
necessariamente acontecido até agora.

O que nos une, como Humanidade, são as consequên-
cias devastadoras de eventos meteorológicos extremos, a
destruição massiva de ecossistemas e de biodiversidade, a
acidificação dos oceanos, a escassez de água e de alimen-
tos, a educação e a pobreza materializada no facto de 2,7
mil milhões de pessoas viverem com menos de 2 USD por
dia, entre outros, o que nos conduz diretamente à ques-
tão da urgente e inevitável adoção e implementação do
paradigma do Desenvolvimento Sustentável.

O alinhamento de todos os stakeholders — empresas,
instituições, ONGs, governos e cidadãos — envolvidos
deve ser alcançado de modo a evitar crises ambientais,
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sociais ou económicas, como também poderá ser o caso,
futuramente, da Carbon Bubble.

No contexto atual, a “neutralização de carbono” é
uma das ferramentas mais eficazes para contribuir, em si-
multâneo, para a satisfação das necessidades energéticas
globais e para a contenção do Aquecimento Global.

De modo a obter um significativo efeito de escala, a
neutralização deve, preferencialmente, ser feita a mon-
tante, a partir das empresas produtoras e distribuidoras,
com o objetivo de compensar as emissões dos automó-
veis, empresas, organismos, escolas ou particulares.

De igual modo, estas poderão neutralizar as suas
emissões de Gases com Efeito de Estufa (CO2 equiva-
lente) decorrentes das suas atividades, convertendo-se
em empresas ou instituições “Carbon Neutral”, mediante
a aquisição de "Créditos de Carbono".

Desta maneira, pretende-se o seu envolvimento cons-
ciente num processo ambiental e socialmente responsá-
vel, possibilitando o financiamento de projetos de reflo-
restação, regeneração de solos, agricultura sustentável,
e de apoio às populações através da implementação de
tecnologias de biogás e de fornos solares, bem como pro-
movendo a criação de emprego (green jobs) em algumas
das regiões mais desfavorecidas do globo.

A estratégia de comunicação deve ser orientada para
o facto de a neutralização respeitar exclusivamente às
emissões de carbono que não se podem evitar, alertando
ao mesmo tempo para o exemplo das boas práticas como
uma oportunidade de mitigar as alterações climáticas... e
de economizar.

De realçar que — de acordo com estudos levados a
efeito com a colaboração do Imperial London College —
a compensação efectuada com Créditos de Carbono (VCS
- Verified Carbon Standards) cria significativamente mais
valor (cerca de 100 vezes) do que o seu custo.

Reforestation in Kibale National Park (Uganda)
Source: Face the Future, 2017 www.facethefuture.com
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Pine derived resin composites for 3-D printing

by VIDHURA MAHENDRA AND GEOFFREY R. MITCHELL
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Corresponding author email: vidhura.mahendra@ipleiria.pt

Abstract Pine resins are broadly used as an adhesive material for construction applications and polycaprolactone
(PCL) is a biodegradable polymer. In this work, porous pine resin-based/PCL composite scaffolds were designed and
fabricated via layer by layer bio-printing, a rapid prototyping technique.

Figure 1: Separation of pine resin in to rosin, water and turpentine.

1 Introduction

Portuguese pine resins are widely known for their adhe-
sive properties in material applications in industry [1].
Rosins are the non–volatile exudates of the pine resin
which are obtained by tapping the tree and evaporating
the volatile product (turpentine) collecting as flakes or
sleets in a large tank (Figure 1). They usually appear
pale yellow (Figure 3) to light brown in colour with a
pleasant aromatic odour. The materials are traditionally
used as lubricant products.

Rosin exists as a mixture of rosin acid (Figure 2,
e.g. an abietic acid) is readily soluble in many orga-
nic solvents (e.g. ethanol, methanol, chloroform, dich-
loromethane and dimethyl formamide) which is a ga-
teway for structural modification, chemical crosslinking
and blending for reinforcements in terms of creating a
composite material with appropriate mechanical proper-

ties.

Figure 2: The chemical structure of the abietic acid, a rosin
acid.

We have previously reported on fabrication of rosin
composite scaffolds with nanoclay as a potential all green
composite material [8].

Scripta-Ingenia (7), Winter Solstice, December 21, 2016. (ISSN: 2183-6000)
m http://cdrsp.ipleiria.pt T (351) 244-569441 B scripta.ingenia@ipleiria.pt Page 5

http://cdrsp.ipleiria.pt
mailto:scripta.ingenia@ipleiria.pt


3 RESULTS AND DISCUSSION

(a)

(b)

(c)
Figure 3: The schematic route to obtaining a sample of
rosin from the pine forest (a), tapping the tree (b) and

obtaining the rosin (c).

2 Methodology

Gum rosins were obtained via local producers, purchased
from Costa e Irmãos, Leiria, Portugal. Polycaprolactone
(PCL) CAPA 6500 and chloroform were purchased from
Alfa Aesar and used as they are. Experiments were con-
ducted using standard laboratory glassware. Rosin com-
posite scaffolds were prepared by using rosin and PCL in
chloroform 10% w/v as cast films. Scaffolds were printed
using a 3-D printer that can be parameterized.

The scaffolds produced were coated with gold and
examined in a high vacuum Scanning Electron Micros-
cope (Cambridge Stereoscan S360 operating at 20 kV
using the secondary electron detector). The distribution
of the PCl in the polymer matrix was examined using an
Oxford instruments INCA system attached to the micros-
cope which enabled maps of the elemental composition
across the sample to be determined.

3 Results and Discussion

In this section we discuss the polymer blending with ro-
sin, bio-printing ability and the structural geometry of the
pine-resin based composite scaffolds.

3.1 Formation of rosin polymer blends

Rosin in polymer blends of different concentrations (Ta-
ble 1) were prepared using the solvent cast method (Fi-
gure 6). Ground rosin and PCL were dissolved using
chloroform in separate sample vials and once the two
products were completely dissolved, mixed together and
vortexed to ensure homogeneity. The blended materi-
als were subsequently cast on Petri dishes and kept in
the fume-hood for 3-4 days for solvent evaporation, al-
ternatively can be kept in an incubator. Once the films
were completely dried, removed from the Petri dishes and
weighed to observe for weight loss. We have noticed that
there was no weight loss and the films appeared well dis-
persed ensuring a satisfactory composite film (Figure 6).
The films were removed from the Petri dishes, sliced in
to smaller pieces for the extrusion (Figure 7) to fabricate
scaffolds as desired.

Rosin (weight %) PCL (weight %)
10 90
25 75
40 60
50 50
60 40
75 25
100 0

Table 1: Rosin and PCL concentration by weight
percentage.
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3 RESULTS AND DISCUSSION

3.2 Bio-extrusion

The composite rosin scaffolds have been printed using the
bio-extrusion system that enables the fabrication of mono
and multi-material scaffolds through a layer-by-layer ma-
nufacturing process. The parameters (Table 2) were wor-
ked out to afford scaffolds that have optimum porosities
(>1mm) and mechanical strengths. Rosin blend films
made out of 60 and 75% were not used in printing on
this occasion, however, a sample of 100% rosin was ob-

tained for comparison purpose proved to be brittle both
as a filament and scaffold (Figures 4 and 5).

We have noted the changes in the printing properties
by means of not only blending rosin with a polymer in
various concentrations to obtain composite scaffolds (Fi-
gure 8) but also altering the printing parameters such as
the flow rate and the temperature. These changes of prin-
ting parameters ensure that naturally adhesive and brittle
pine resins afforded a consistent fibre with elastic nature.

Rosin
(weight %)

Extrusion
Temperature (oC)

Base plate
Temperature (oC) Pressure (bar)

Flow rate
(mm/min)

Strength of
the scaffold

10 120 25 6 475 Good
25 80 15 6 650 Good
40 80 15 6 650 Good
50 80 15 6 650 Good
60 - - - - N/A
75 - - - - N/A

100 135 25 2 750 Poor
Table 2: The extrusion parameters of the rosin/rosin composite scaffolds.

Figure 4: Extruded rosin filaments at 80 oC.

Figure 5: A two-layered rosin scaffold printed at 135 oC.

Figure 6: A solvent caste rosin composite film in a Petri
dish.

Figure 7: Sliced pieces of solvent cast rosin composite film
in a Petri dish ready for bio-extrusion.
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Figure 8: An example of bio-printing rosin composite scaffold of 9 layers.

Figure 9: SEM image of the 10% rosin composite scaffold.

Figure 10: SEM image of the 25% rosin composite scaffold.

Figure 11: SEM image of the 40% rosin composite scaffold.

The Scanning Electron Microscopic (SEM) images (Fi-
gures 9–11) reveal some prominent structural observati-
ons with the changes of rosin concentration in the compo-
site scaffolds. Printing at high temperature does not show
significant changes (Figure 9) at lower concentration of
rosin but at high temperature shows some surface chan-
ges (Figure 10). However, printing at low temperature
of high rosin concentration does not show a significant
change in the scaffold (Figure 11).

4 Conclusion

Rosin composite scaffolds were produced using various
concentrations in PCL. They were successfully presen-
ted in aligned fibres, good geometry and porosity. The
change of printing parameters provided a steady extru-
sion of fibres and porosity. We expect our findings are
a step forward in the advanced science and technology
with related to natural product development and green
chemistry.
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Abstract A mathematical model is being considered
within the context of the movement of water molecules
in space. It aims to identify the three different phases in
terms of their position in space and it is related with the
hydrogen bonding effect.

Water is H2O, hydrogen two parts, oxygen
one, but there is also a third thing, that makes
it water. And nobody knows what it is. The
atom locks up two energies, but it is a third
thing present which makes it an atom.

— D H Lawrence, The third thing,
The works of D H Lawrence (1994), 428

1 Introduction

Water is an essential component in human life. It can
occur in all three states, solid (ice), liquid and gas also
known as vapour. Solid phase is the ice as in frozen wa-
ter. When water freezes, its molecules move farther apart
and arranges in hexagonal shapes (Figure 1), making ice
less dense than water in liquid state. This means that ice
will be lighter than the same volume of water and so ice
will float in water. Water freezes at 0o C. Liquid water
is wet and fluidic and is the phase of water with which
human life most familiar with. Upon boiling (100o C) the
water changes from a liquid to a gas or water vapour. As
some of the water vapour cools and appears as a small
cloud called steam.

Figure 1: Liquid and Solid Water Molecules Ice is less dense than water because frozen water molecules are locked
together in a fairly open network by rigid hydrogen bonds. .

2 Molecular structure and reactivity
of water

Water is structurally a tiny bent molecule with the mo-
lecular formula H2O consisting of two hydrogen atoms
attached to a heavier oxygen atom. Each molecule is
electrically neutral but polar with the centre of posi-

tive and negative charges located in different places.
Each hydrogen atom has a nucleus consisting of a sin-
gle positively-charged proton surrounded by a ’cloud’ of
a single negatively-charged electron and the oxygen atom
has a nucleus consisting of a eight positively-charged
protons and eight uncharged neutrons surrounded by a
’cloud’ of an eight negatively-charged electrons. On for-
ming the molecule (Figure 2), the ten electrons pair up
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3 MATHEMATICAL MODEL

into ’orbitals’ one pair closely associated with the oxy-
gen atom (known as s orbital), two pairs associated with
the oxygen atom as ’outer’ electrons and two pairs for-
ming each of the two identical Oxygen-Hydrogen cova-
lent bonds (known as p orbital).

Figure 2: sp3 hybridisation of water molecule.

The other two pairs of electrons represent the so-
called ’lone pairs’. These electron pairs form electron
’clouds’ that are spread out approximately tetrahedrally
around the oxygen nucleus as they repel each other. This
is the reason for water’s bent structure. The eight posi-
tive charges in the oxygen nucleus attract all these elec-
trons strongly relative to the single positive charges on
each of the hydrogen atoms. This leaves the hydrogen
atoms partially devoid of electrons hence partially posi-
tively charged and the oxygen atom partially negatively
charged.

Figure 3: Hydrogen bonding takes place in water molecules
between partially negatively charged Oxygen atom and

partially positively charged Hydrogen atom.

Now let’s see some key points in the movement of
the water molecule upon heating increases the speed of
the molecules. An increase in the speed of the molecu-
les competes with the attraction between molecules and

causes molecules to move a little further apart. Cooling
decreases the speed of the molecules. A decrease in the
speed of the molecules allows the attractions between
molecules to bring them a little closer together.

Heating a substance increases molecular motion. Co-
oling a substance decreases molecular motion. As mo-
lecular motion increases, the space between molecules
increases. As molecular motion decreases, the space
between molecules decreases.

Hydrogen bonding between water molecules is
known as intermolecular forces and covalent bonding
between hydrogen and oxygen is known as intramolecu-
lar forces.

3 Mathematical Model

In this section we propose a mathematical model which
can be used to explain the three different states at which
water can be found in our planet. We assume to have ar-
bitrary precision tools that measure the position of atoms.
Consider a parallelepiped container of 18 mm length for
its base and with sufficient height to be independent of
pressure. Alternatively we may consider a cubic contai-
ner with length L for each side, where L is the necessary
length to guarantee that one mole of water molecules is
kept at constant pressure. For example, at room tempe-
rature, we would have L = 18 mm (18 is the molarity of
the water molecule.

Figure 4: a water-cube [8]

Our experiment thus consists of a container with one
mole of water molecules, keeping track of each of the
molecules individually and explaining the variation of its
states (solid, liquid and gas) as a function of temperature.

Each water molecule can be modelled as two values,
λ and θ. The value λ represents the distance between the
centre of the oxygen atom and the centre of each one of
its hydrogen atoms (which is the same distance). The va-
lue θ is the angle between the two hydrogen atoms with
respect to the oxygen atom (Figure 5).
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3 MATHEMATICAL MODEL

θ
λλ

H H

O

Figure 5: A water molecule with distance λ and angle θ

In order to define the model we choose one of the hy-
drogen atoms as first and use it as a reference. Once we
have done that, we may identify a water molecule with
the two values λ, θ, and represent them onto, say, the
complex plane. The result is illustrated in the picture (Fi-
gure 6) representing the complex plane with the Oxygen
at its origin, the first Hydrogen atom along the real axis
and the second Hydrogen atom at a distance λ and an
angle θ.

real

imaginary

λ θ

H2

H1O

Figure 6: Axis representation of a free water molecule in
space

This would mean to identify O with the zero complex
number, the first hydrogen atom, H1, with the number
λ = λei0 and the second hydrogen atom, H2, with the
complex number λeiθ (Figure 7).

In order to keep track of each individual molecule, we
need to have the coordinates for the centre of the oxygen
atom, (x, y, z), as well as a rotation of the three-space,
which is best represented as a unit quaternion. Indeed, if
~u is a unit vector of R3 indicative of a direction of rota-
tion, and if ϕ is the angle of rotation around ~u, counter-
clock wise. This information can be represented as the
quaternion

r = cos
(ϕ

2

)
+ sin

(ϕ
2

)
~u (3.1)

where we explicitly see how it encodes the rotation ~u and
angle ϕ, see for example [1] for further details.

This means that every water molecule, in our system,
is completely characterized by a six-tuple (x, y, z, λ, θ, r)
where x, y, z are coordinates for the three-dimensional
space, λ is a real positive number, θ ∈ [0, 2π[ is an angle

and r ∈ H is a unit quaternion (r = (r1, r2, r3, r4) ∈ R4

such that r21 + r22 + r23 + r24 = 1). Let us now see how to
realize a water molecule inside our container from the pa-
rameters (x, y, z, λ, θ, r) as well as how to extract the cha-
racteristic parameters from a given water molecule that
is observed.

From a mathematical point of view, we can now allow
ourselves to do some simplifications to the model. For an
example, a water molecule, with a chosen order for its
two hydrogen atoms, is mathematically a complex num-
ber z = λeiθ. Likewise we can describe the second hydro-
gen atom as the complex number λeiθ, in doing so the
oxygen atom is the number 0 = 0 + 0i while the first hy-
drogen is the complex λ = λei0 = λ+ i0, where i =

√
−1

is the imaginary unit.

In our theoretical experiment we consider one mole
of molecules of water in a cubic container of length L,
so that when the temperature changes, the pressure stays
constant and equal to one bar.

We can now explain how to go back and forward from
the mathematical model and the physical mental experi-
ence. In order to do that we need to have some general
concepts on quaternion numbers ([1]).

Given a six-tuple (x, y, z, λ, θ, r), let us see how it po-
sitions a water molecule in the three-space. For the con-
venience, let us observe that from a unit quaternion r we
are able to extract an angle ϕ and a unit vector ~u in R3,
just by using the formula (3.1). The procedure to realise
a water molecule is as follows: begin with the complex
plane, mark the three points 0, λ, λeiθ on it and denote
them, respectively, as O, H1, H2 (Figure 7).

real

imaginary

λ θ

H2 = λeiθ

H1 = λ

O=0

Figure 7: Representation of a free water molecule as a
complex number

This first step only provides a free water molecule, we
still need to position it on the three dimensional space. In
order to do that we have to place the complex plane into
the three dimensional space R3, making it parallel to the
plane y◦z, and matching its origin (which corresponds to
O = 0 in the picture (Figure 7)) with the point (x, y, z).
This will create a picture as illustrated (Figure 8).
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3 MATHEMATICAL MODEL

Figure 8: Placement of the complex plane onto the 3-space
at a given origin (x, y, x) and normal to the vector
~n = (1, 0, 0). The origin of the complex plane is

representing the Oxygen atom of a water molecule. The
two Hydrogen atoms are also illustrated

The following step is to rotate the complex plane by
the angle ϕ and rotate the vector ~n (which is parallel
to the vector (1, 0, 0) and perpendicular to the complex
plane placed at the point (x, y, z)) so it would coincide
with the vector ~r. Figure 9 illustrates the process for
a rotation of 90o around the y-axis, assuming that the
origin is O = (1, 1, 1), or in other words, the vector
~r = (0, 0,−1).

Figure 9: The process of rotating the region shown in Fig.
8 by an angle ϕ = 0 and a vector ~r = (0, 0,−1)

Formally, if T : R3 → R3 is the transformation that
maps ~n = (1, 0, 0) into ~r then H ′1 = T (H1) and H ′2 =
T (H2).

Conversely, given a water molecule in our physical
system, we register the coordinates of the centre of its
Oxygen atom (this gives us O = (x, y, z)) as well as the
coordinates of the centres of the two hydrogen atoms (at
this point we decide the first one of the Hydrogen atoms,
as H1, and the other as H2). The value λ is obtained as

the distance between O and H1, which is the same as the
distance between O and H2,

λ = abs(H1 −O) = abs(H2 −O).

The angle θ is obtained as the arccos of the dot product
divided by the square of the length λ,

cos(θ) =
(H1 −O) · (H2 −O)

λ2
,

this is the usual formula to compute the angle between
two vectors, in this case ~OH1 and ~OH2. It remains to
explain how we can obtain the rotation angle ϕ and the
vector ~r. The vector ~r is the normal vector to the plane
defined by the two vectors ~OH1 and ~OH2, and it can be
obtained by the cross product

~r = (H1 −O)× (H2 −O).

The angle of rotation ϕ is obtained by moving the vec-
tor ~r to match the vector (1, 0, 0), which gives a transfor-
mation T : R3 → R3 such that T (~r) = (1, 0, 0), applying T
to the vector ~OH1 = (H1 − O), and measuring the angle
that the vector T (H1 − O) does with the vector (0, 1, 0),
this angle is ϕ.

We are now ready to describe the complete model of
our system for one mole of water molecules. For this pur-
pose we need to make one more assumption, that our
system evolves in time and that it is linearly dependent
of the temperature. The temperature line can be illustra-
ted (Figure 10).

◦C-273 a 0 100 b

Figure 10: Temperature line with respect to a and b, the
water breaking points

The values of a and b are the temperature limits upon
which the water molecules break their bond and the oxy-
gen and the two hydrogen separate themselves. At that
point our formulae would not be plausible. This is to con-
firm that our system evolves in time and assume that the
temperature is a linear function of time so that at time
t = 0 and time t = 100 the temperature varies between
0oC and 100oC.

Under these assumptions we have that our system is
described as a mapping

α : A×]a, b[→ R
3 × C× H

whose domain is the cartesian product of the set

A = {1, 2, 3, . . . , nA},
with nA representing Avogrado’s number, which counts
the number of atoms of Hydrogen that are contained in
one gram and it is approximately 6.0221409 × 1023, and
the set

]a, b[= {t ∈ R | a < t < b}
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where a and b are the extreme values upon which (if con-
sidered as temperature values in degrees Celcius) the wa-
ter molecules desintegrate, and whose codomain is the
cartesian product of the euclidean 3-space, the complex
numbers and the quaternions.

Each pair (i, t) in the domain, with i = 1, 2, 3, . . . , nA
and a < t < b, is a reference to a water molecule at a
given temperature and the values

α(i, t) = (x, y, z, λeiθ, r)

are the coordinates for the position of the water mole-
cule.

In order to deduce the states of the water we consider
a measure of the entropy of the system as follows. For
each i ∈ A, at a given t ∈]a, b[, we define

d01(i, t) = min
j∈A,j 6=i

{abs(H1(j, t)−O(i, t))}

d02(i, t) = min
j∈A,j 6=i

{abs(H2(j, t)−O(i, t))}

d1(i, t) = min
j∈A,j 6=i

{abs(O(j, t)−H1(i, t))}

d2(i, t) = min
j∈A,j 6=i

{abs(O(j, t)−H2(i, t))}

and utilise this values to obtain a measure of the total en-
tropy in the system at a given time (temperature). This
measure is given by the formula

ε(t) =
∑
i∈A

min(d01(i, t), d02(i, t)) + d1(i, t) + d2(i, t)

nA

Finally, we can observe the three different states of
water as a function of the temperature by plotting the
entropy of the system and how it varies with tempera-
ture. We conjecture it would have a behaviour as follows,
with the three different states being distinguished by way
the entropy of the system varies as function of the tem-
perature: constant=solid, linear=liquid, non-linear=gas
(Figure 11).

◦C-273 a 0 100 b

ε(t)

u

v

w

Figure 11: Possible triple-state graph of water

Figure 12: Spacial arrangement of water molecules in
terms of hydrogen bonding [9]

4 Conclusion

In this work we have attempted to provide a mathema-
tical model in terms of the water molecular movement
as a function of temperature in its tri-states (solid, liquid
and gas). This can be exemplified in terms of hydrogen
bonding (Figure 12) which is a rigid to weaker electrosta-
tic force upon temperature variations on each water mo-
lecule attached with its partially negative oxygen (Oδ−)
atom to partially positive hydrogen (Hδ+) atom at 1 atm
(or 101325 Pa) pressure. The assumptions have been
considered to minimise the errors and uncertainties in
our system. For an example at low temperature (<0 C)
the rigidity of hydrogen bonding is greater as opposed
to higher temperatures thereby the movement of water
molecules is greatly varied.

In a future work we will use a Brownian motion model
to simulate the real movement of water molecules and
compute the proposed formulas for the system’s entropy.
This will test the conjecture proposed for the characteri-
zation of the three states.
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Abstract In this paper we introduce the notion of a
multi-link which is a new mathematical structure that can
be used as a tool for the encoding and systematization
of new and more efficient algorithms in the aim of 3D-
printing. Applications and examples are provided.

1 Introduction

From a computer’s memory storage point of view, the no-
tion of a 2-dimensional matrix, with lines and columns,
does not make much sense. At least it does not make
much more sense than an arbitrarily n-dimensional ma-
trix. In practice, what is it that it is really stored into a
computer’s disk memory is simply an array, and the most
efficient arrays are the linear ones. In spite of everything
that has been said during the last two or three decades
about formal file systems, the non-structural ones are still
the ones that are preferred. This explains, for example,
why the STL file format is still so common nowadays.

In this paper we are proposing a new mathematical
structure which on the one hand can be stored as a linear
array of information, while, on the other hand, it can be
used to encode highly non-trivial structures such as sur-
faces and their properties. These properties, as we will
see, may be decomposed into logical, functional and ge-
ometrical information and they cover most of the whole
spectrum of processes that are involved in 3D-printing.

The new mathematical structure that we are introdu-
cing is an abstract system, called multi-link, and it was
motivated by a long series of experiments with mathema-
tical structures and their properties, namely the ones that
are related with efficiency and encoding of information.
See for example [4, 2, 8, 9] and the references therein.

This work is organized as follows. We first motivate
the notion of a link, which can be seen as an abstraction
for the notion of a curve (appropriate for computational
purposes) and then, by generalizing it into several diffe-
rent ways, we get the notion of multi-link. This basic no-
tion was the result of a long period of maturation and its
main characteristic is the fact that it is suitable for the en-
coding of n-dimensional matrices as simple linear arrays.
The key ingredient is the observation that the transition
maps from (i, j) to (i + 1, j) and (i, j + 1) can be seen
as two permutable maps from the set of linearized inde-
xes into itself. We give some details on this passage on
section 3.

From section 3 onwards we concentrate our attention
on the abstract notion of a multi-link by observing that
it has several useful and important particular cases. In-
deed, as we will see, each one of which has its purpose
and can be applied into a very specific situation for 3D
printing.

At he end we give a detailed description on the iso-
slice algorithm, as well as an application to the gene-
ration of cooling and refrigerating channels in a mould.
This will came later on, for the moment let us concentrate
our attention on links, first, and then on multi-links, as a
mathematical abstract structure.

2 The notion of a link and its moti-
vation from a planar curve

A classical planar curve is usually defined as a continuous
map from the unit interval [0, 1] into the field of complex
numbers. From the point of view of Mathematics this is
a perfectly reasonable notion and it naturally extends to
curves in the 3D-space. One simply substitute the field
of complex numbers by the euclidean three space, and it
is then just one more step to move to the n-dimensional
vector field Rn. However, from the point of view of com-
putation, this is not really a good definition and many
attempts have been made to find a better alternative. Se-
veral variations can be considered and each one of them
has its own advantages and disadvantages. Here we con-
sider one which seems to be good for the purposes of
encoding contour level curves, the ones that are obtai-
ned from the slicing of triangulated surfaces, and their
applications into the area of 3D-printing and direct digi-
tal manufacturing. The notion that we are proposing as
an abstraction for a curve is called a link. It has arisen by
observing that a curve, if approximated by a piecewise-
linear sequence of directed edges, is a particular case of
a directed graph. A directed graph is a mathematical ob-
ject consisting in a set of vertices, a set of edges and two
parallel maps that assign a vertex to an edge, namely its
source and target. It turns out that some directed graphs,
namely the ones that are obtained by taking an appro-
ximation to a curve, share the characteristic property of
having a linking map. This linking map associates to each
edge a successor edge along the direction of the curve. In
this way we have arrived to the abstract notion of a link.
This notion is intended to be a computational model for
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4 MULTI-LINK

a classical curve.
A link is a mathematical object which consists of a

set, together with an endomap and a map into a geome-
trical algebra (the notion of a geometrical algebra has a
precise meaning in mathematics, however, the reader not
familiar with it may safely assume that it is simply a vec-
tor space, and for the purpose of this paper, Rn will be
enough), as illustrated

Aϕ 5=
g ,2 Rn .

This notion is thus interpreted as a generalized curve
in Rn as follows. The curve is a piecewise linear sequence
of segments; each segment in the curve is determined by
an indexing element in the set of indexes A, and it is ge-
ometrically realised as the vector in Rn whose endpoints
are

g(a) ,2 gϕ(a).

This means that each segment in the curve is indexed by
an element in A, in fact we will sometimes pictured the
segment as a labelled edge in a directed graph

g(a)
a ,2 gϕ(a).

The set A is called the set of indexes, the map ϕ is cal-
led the successor, or transition map (it tells to each index,
which is considered as the origin of the edge, what is its
successor — the successor is at the same time the end-
point of its predecessor and the starting point of the edge
of which it is the index of), this idea can be illustrated as
follows

g(a)
a ,2 gϕ(a)

ϕ(a) ,2 gϕ2(a) ,2 · · ·

For further examples we refer the reader to [5].

3 Moving from an array to a matrix
while keeping it linear

If we try to generalize the notion of a link as an abstrac-
tion of a curve into some new abstract entity which would
serve as a good model for a surface, we would easily be
led to something with the form

X × Y
ϕ ,2 X × Y

g ,2 Rn .

However, as soon as we try to interpret it as a surface
we soon realize that ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)) should
be of the form

(ϕ1(x), y) ,2 (ϕ1(x), ϕ2(y))

(x, y)

LR

,2 (x, ϕ2(y)).

LR

In other words, it should consist on two independent
maps ϕ1 : X → X and ϕ2 : Y → Y , together with the re-
alization (or geometrical) map

X × Y
g ,2 Rn .

The role of ϕ1 and ϕ2 is to determine the behavi-
our of the transitions along the x-direction and the y-
direction. Note that these directions are only abstract and
they should not be confused with the directions of Rn.

Let us see a concrete example. Suppose we are inte-
rested in modelling the cylinder

C = {(x, y, z) ∈ R3 | x2 + y2 = 1, 0 ≤ z ≤ 1},

in this case we could do an approximation, say, with
X = {1, 2, 3, . . . , 360}, Y = {0, 1} and define the maps
ϕ1 : X → X, ϕ2 : Y → Y and g : X × Y → R3 as follows:
ϕ1(x) = x + 1 if x < 360 and ϕ1(360) = 1; ϕ2(0) =
ϕ2(1) = 1; and

g(u, v) =

(
cos

(
2πu

360

)
, sin

(
2πu

360

)
, v

)
As already remarked at the introduction, the crucial

point here is to observe that we may exchange the set
X × Y with another set, which is bijective to it, say A,
and the endomap ϕ : X × Y → X × Y with two endo-
maps α, β : A→ A that are permutable, i.e., αβ = βα.
In this way we form squares indexed by the elements of
A as illustrated

β(a) ,2 αβ(a)

a

LR

,2 α(a).

LR

If the set X has nX elements, and the set Y has
nY elements, then we can take the set A to be the set
{1, 2, 3, . . . , nXnY } and the well known bijection which
transforms pairs of indexes (i, j) into linear indexes a =
inX + j.

The notion of a multi-link is a natural generalization
of the notion of link and it is motivated by the concrete
examples of a square-link (like the one above), a double-
link (which is a structure that models arbitrary surfaces)
and several other that where designed for more specific
purposes, such as contour filling algorithms or generating
voxelized porous 3-dimensional physical structures from
the real world.

4 Multi-link

The notion of multi-link arises thus as a need to encode
and organize the whole bunch of information in the form
of data and algorithms that are used in the whole process
of 3D printing in general and conceptual terms.

A multi-link is a mathematical object consisting in a
set, called a set of indexes, say A, a collection of endo-
maps, say αi : A→ A with i ∈ N, called the transition
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4 MULTI-LINK

maps, a map, say g from the set of indexes into a ge-
ometrical algebra (again the reader not familiar with a
geometrical algebra may assume that it is simply a finite
dimensional vector space), this map is called the geome-
tric realization map, and a collection of surjective maps
pj : A→ Bj with j ∈ N. The maps may be subject to
some commutativity conditions written in the form of
equations expressed in terms of the composition of maps.
The diagram displaying all the information may be pictu-
red as follows.

A

pj

��

αi 5=
g ,2 Rn

Bj

with i ∈ {1, 2, 3, . . . , n} and j ∈ {1, 2, 3, . . . ,m}.
The family of maps (αi) is considered to be the logi-

cal part of the multi-link (since it deals with the indexes
and re-indexation), the map g is considered for obvious
reasons to be the geometrical part, while the family of
projections (pj) is considered as the functional part of
the structure. This is because in most of the examples
the projection maps are simply assigning some functional
behaviour to the edges, like color properties or materials
or other kind of physical interpretation which in practice
gives to a specific edge what its role is, in the sense of
what its function is about.

let us now see some concrete examples of the struc-
ture. In the following sections we give some details on
how the structures can be used as well as from where
they were motivated.

4.1 Particular cases as examples

4.1.1 Coloured link

A coloured link is simply a link with a surjective map into
some set C, of colors, in other words it is of the form

A

c

��

α 5=
g ,2 Rn

C

such that cα = c.
It is interpreted as a link in which every edge has a

certain color associated to it, and moreover, the edges in
the same component (in the sense of orbits of α) have the
same color, but different components may have different
colors.

4.1.2 A square-link

A square link was introduced above and it can be seen as
a special case of a multi-link with two endomaps and no
projections. Moreover the two endomaps, say α and β,
have to be permutable, that is, we should have αβ = βα.

If we take the example of the cylinder from above and
use the bijection

φ : X × Y → A

from the cartesian product of X = {1, . . . , 360} and
Y = {0, 1} into A = {1, . . . , 720} which is defined by
φ(i, j) = i + j360, then, in order to give the structure of
a square-link it remains to specify the maps α, β : A→ A
and g : A→ R3. In this case we should put α(360) = 1,
α(720) = 361 and α(x) = x + 1 in the other cases. For
the map β we should have β(x) = 360 + x if x ≤ 360 and
β(x) = x for all the other values of x ∈ A. The map g is
now defined as

g(x) =

(
cos

(
2πx

360

)
, sin

(
2πx

360

)
, 0

)
when x is less or equal to 360 and

g(x) =

(
cos

(
2π(x− 360)

360

)
, sin

(
2π(x− 360)

360

)
, 1

)
for the cases when x is greater than 360.

4.1.3 A triangulation

The structure of a triangulation has been studied in [6]
and it is an important example of a multi-link.

The structure of a triangulation generalizes the one
of a directed graph. It consists of two sets (vertices and
triangles) and three parallel maps between them, as dis-
played

T
a ,2
b ,2
c
,2 V. (4.1)

An element t ∈ T is interpreted as a triangle in the fol-
lowing manner

c(t)

�


t b(t).

\f

a(t)

3:

In practice we are concerned with triangulated surfa-
ces in the three dimensional euclidean space

T
a ,2
b ,2
c
,2 R

3, (4.2)

In [6] we explain that those triangulations which are
obtained as the boundary of a physical real object in the
3-D euclidean space are the ones with the property that
every vertex has a start-neighbourhood of triangles. In
other words, these triangulations are the ones for which
the collection of triangles that are incident into a given
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4 MULTI-LINK

vertex can be cyclically ordered by sharing an adjacent
face, as illustrated.

·

�$z�

·

z�

lr

· ,2

�$

v ,2

:DZd

lr

z� �$

t0=tn
t1

t2 ··· tn−2

tn−1

·lr

Yd

·

:D

,2 ·

Zd :E

(4.3)

The passage from a triangulation into a multi-link is
performed in [6] as a way of efficient encoding the trian-
gulations that have the desired property, namely that all
vertices have a star-neighbourhood. For practical reasons
we substitute R3 with the Cayley algebra (or geometric
algebra) of quaternions H, see [1]. In [6] it is proved
that the triangulations

T
a ,2
b ,2
c
,2 H, (4.4)

in which every vertex has a star-neighbourhood, are equi-
valent (has a mathematical structure, in the sense that
they contain the same information) to a multi-link of the
form

Aθ,ϕ 5=
g ,2 H (4.5)

such that

θ3 = 1A (4.6)

θ2 = ϕθϕ (4.7)

gϕ = g (4.8)

and moreover, in order to have the star-neighbourhood
property displayed in (4.3) one should add the require-
ment that ϕ is an isomorphism.

4.1.4 A double-link

The notion of a double-link encodes in the most gene-
ral way the concept of a surface. Here we will only give
the definition and the simple example of the tetrahedron.
Further examples and the study of its main properties are
postponed for future work. The examples of the other
platonic solids can be found in [3].

A double-link is an instance of a multi-link which can
be displayed as

A

v

�%

f

z�

α,β 5=
g ,2 R4

F V

and it is such that

αβαβ = 1A

βαβα = 1A

fα = f

vβ = v

The example of a tetrahedron, due to its simplicity,
can be used to better illustrate the notion under analy-
sis. From the following picture, which shows the planar
graph representation of a tetrahedron (with the usual di-
rected edges replaced by oriented squares that are build
up from the labels α and β), we can deduce a concrete
example of a double-link, as follows.

a1

βz�

α

��

a2
β
,2

α

}�

a3
β

Yd

α

��
a4 β

�$

α

LR

a5
βlr

α #+
a6β

z�

α

3;

a7
β

:E

α

s{

a8β

y�

α

Wa

a9
β
,2

α

18

a10

βZe

α
,2 a11

β
,2

α
ck

a12

βZe

α

ck

Take A to be the set {a1, . . . , a12} and let the en-
domaps α and β be defined by the labels indicated in
the planar graph representation, that is α(a1) = a12,
β(a1) = a2, etc. The projection map f is the quotient
over the orbits of α, which means it gives us the faces
of the tetrahedron. The projection map v is the quotient
over the orbits of β, this gives us the set of vertices. The
map g can be any realization of the elements from A into
a space and we omit the details of it.

4.1.5 A cubic-link

A cubic link is a straightforward generalization of a
square-link and it is useful in modelling volumes with
porous structures on it, see for example the Technical Re-
port [10] produced by the Laboratory of Topology and
Geometry from CDRSP-IPLeiria.

A cubic link is a structure

A
g ,2

α,β,γ 5= H ' R4

such that αβ = βα, αγ = γα and γβ = βγ. It is inter-
preted as a collection of voxels of a cubic shape. In the
same way as a square-link models a surface which is ge-
nerated by a square patch along two abstract directions,
a cubic link can be used to generate a 3d-manifold which
is generated by a collection of cubes attached along three
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5 THE ISO-SLICE ALGORITHM

different abstract directions, say α, β, γ, as illustrated.

γ(x)
β ,2

RL

γ

α

w�

βγ(x)
RL

γ

α

v�
αγ(x)

β ,2
RL

γ

αβγ(x)
RL

γ

x
β ,2

α

w�

β(x)

α
v�

α(x)
β ,2 αβ(x)

(4.9)

4.1.6 A n-cube-link

Again, a straightforward generalization of a cubic-link is
obtained if instead of three abstract directions we consi-
der any finite number n and thus obtaining

A
g ,2αi 5= G , i = 1, 2, . . . , n

where G is any geometrical algebra (or more simply a
vector space), and the αi are permutable in the sense that
αiαj = αjαi for any i, j in {1, 2, . . . , n}

This structures arises for example in the construction
of n-dimensional volumes with porous structures on its
interior and it has some applications in 3D-printing.

4.2 A contour filling curve

The paper [7] describes a procedure on how to generate
sweep trajectories for planar regions that are encoded by
its boundary and obtained by slicing a three-dimensional
body.

The details that are in the base of the motivation for
considering this structure are referred to [7]. Here we re-
call the structure that is used there, which is an instance
of a multi-link. It consists on a diagram of sets and maps,
as illustrated,

E
p

�$
q

y�

r,s,g 4=

C L

such that

r2 = s2 = g2 = 1E

qr = qs = q

pg = p

It may be illustrated as in the following pictures
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rr

s s

r
s
r r
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d
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1918
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20

16

1110

21

23

17

13

where the role of the maps r, s, g is visible in the picture
on the right. As we have said, our concern here is only
to illustrate the structure of a multi-link with one more
concrete example and its application, we refer the reader
to the paper [7] for further details on this topic.

4.2.1 A square patch

A square patch is an intermediate level between a square-
link and a double-link. It is the analogue to a triangu-
lation except that it is made out of squares rather than
triangles. The generalization from a triangulation is not
difficult to obtain and we omit the details. As an instance
of a multi-link it is described as follows.

Aθ,ϕ 5=
g ,2 H (4.10)

such that

θ4 = 1A (4.11)

θ3 = ϕθϕ (4.12)

gϕ = g (4.13)

The orbits of θ are now interpreted as the faces (which
are all squares) while the orbits of ϕ are interpreted as the
vertices.

5 The iso-slice algorithm

In this section we give the necessary details for an imple-
mentation of an algorithm that efficiently computes level
iso-contours. The contours are the ones obtained by sli-
cing a triangulated surface in the euclidean 3d-space with
respect to an iso-surface of a given level.

The algorithm may be decomposed in the following
following steps:

(1) Consider a triangulation as input

T
a ,2
b ,2
c
,2 V

x ,2
y ,2
z
,2 R

(2) Transform the given triangulation into a double-
link as explained before (see also [6]). This gives
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6 AN EXAMPLE OF APPLICATION

us a structure of the form

A

v

�%

f

z�

α,β 5=
g ,2 R3

F V

with the meaning that the orbits of α are the faces
(elements in F ) and the orbits of β are the vertices
(elements in V ).

(3) Suppose there is also given a family of iso-surface
in the 3d-space, say defined by a map

F : R3 → R

which intuitively may be thought of as assigning
to every point in space a certain hight; the main
example is F (x, y, z) = z, this gives us planar sli-
ces along the z-direction, but we may also have
F (x, y, z) = x2 + y2 or F (x, y, z) = x2 + y2 + z2 and
have, respectively, cylinders and spheres; arbitrary
maps are possible as well and depending on each
particular case of application they are defined in a
specific way with a specific meaning, the algorithm,
however, works for an arbitrary map.

(4) Transform the structure of double link from item 2
into the structure of a coloured link by considering
ϕ = βα, h = Fg and forgetting the projection map
v, this gives us

A

f

��

ϕ=βα 5=
h=Fg ,2 R

F

the map h is intuitively the hight of each point in A
relative to the iso-surface level F from item 3;

(5) For each contour level r ∈ R do:

(a) obtain the subset of A in the coloured link
from item 4 defined by:

Ar = {a ∈ A | h(a) ≤ r < hϕ(a)}

(b) consider the directed graph whose edges are
the elements in Ar as well as the vertices; the
domain map is the identity map and the codo-
main map is ϕ = βα, this will produce a pic-
ture which may be interpreted as illustrated

· · · αlr β ,2

α

��

· · ·αlr αlr

· · ·

f(a)

α ,2 a

α

LR

βlr α ,2 · · · α ,2 a′

α

LR

f(a′)

where we suppose that both a and a′ are in
Ar. This means that r ∈ R is a hight laying
between h(a) and hβα(a) as well as between
h(a′) and hβα(a′). The idea is to link a and a′

and to do so it is sufficient to identify the orbits
of α via f . This procedure creates a directed
graph.

(c) construct the directed graph

Ar
c
,2

d ,2 F

from the subset L : Ar ↪→ A (item 5(a)) to the
set of faces F (item 4), with d = fL and
c = fϕL = fβαL. This graph is obtained
by applying the quotient map f to the graph
considered in item 5(b).

(d) Link the digraph from 5(c), that is, find
ϕr : Ar → Ar such that dϕr = c. This is a ge-
neral process and it can be performed in a uni-
que way, provided the faces are geometrically

convex. Indeed, Let E
d ,2
c
,2 V be an arbi-

trary directed graph, it has a symmetry, that
is, there exists a bijective map ϕ : E → E such
that dϕ = c if and only if the incoming edges
are in bijection with the outcoming ones, for
every vertex in V . In our case, if the faces are
convex then they will either not be intersected
by the iso-surface level r or they are intersec-
ted exactly in two different edges (in the pic-
ture displayed at item 5(b) this was assumed
to happen at the edges starting at the indexes
a and a′).

(e) Construct the link structure

Arϕr 2:
gr ,2 R3 ,

with gr(a) = g(a) + tr(gϕ(a)− g(a)) where

tr =
r − h(a)

hϕ(a)− h(a)
,

recall that ϕ = βα and h = Fg, come from
item 4.

(6) Collect all the links structures (Ar, ϕr, gr) for all the
contours r ∈ R in which we may be interested in
and return this information as output.

6 An example of application

An example of application for the iso-slicing algorithm
is the following. Suppose we have a solid body object
of which we want to produce a mould with refrigeration
channels. This means that if S ⊆ R3 is our solid then
we are interested in the region of the space S̄ = R3 \ S.
Moreover, suppose we wish to make some channels along
the surface area of the boundary of S̄, while keeping the
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channels on the interior of the region. Furthermore, in
order to simplify the process, let us assume that these
channels are generated by planar curves parallel to the
xy-plane. To do so we need to determine how the ratio
distance between two consecutive layers should be defi-
ned so that the cooling temperature is isotropic along the
surface metric. One way to do it is to use our procedure,
the iso-slice algorithm. The key aspect of it is to define the
hight function F : R3 → R. In this case the high function
is interpreted as the distance measured along the surface
between the points in a lower level and the correspon-
ding ones in the upper level immediately above it. We
give below some details on how this procedure can be
implemented.

Suppose (T, V, a, b, c, x, y, z) is a triangulation such as
the one given on item 1 of section 5, which is considered
to be an approximation to a surface defined by the boun-
dary of S = closure(interior(S)) ⊆ R3. We are interested
in generating contour levels along the iso-surfaces which
are geodesics along a direction perpendicular to the xy-
plane. These contour paths will give us the generators for
the cooling channels. In order to do that we observe the
following steps:

(1) obtain a square-link from the given triangulation:

(a) find an appropriate set of contours equally
spaced that can serve as a good approximation
to the given triangulation;

(b) for each one of the contour levels identified
on the previous item, execute the slicing algo-
rithm with F (x, y, z) = z;

(c) resample the number of points obtained in
each set of indexes from the final link (as in
item 5(2) from section 5) so that they all have
the same number of points;

(d) construct a square-link by letting A to be the
union of all Ar, assuming that we have cho-
sen say, r ∈ {r0, r1, . . . , rn} ⊆ R and that each
Ar has, say, m = 100 elements. This is done
by letting the map α to be given by the collec-
tion of ϕr and β to identify each point in the
level ri with the closest one on the level ri+1.
This does not necessarily give a structure for a
surface which is homeomorphic to the initially
given one but it is equivalent from the point of
view of the generation of the cooling channels.

(2) having a square link (A,α, β, g) as defined in
section 4.1.2 we now define the iso-surface fa-
mily F : A→ R iteratively as follows (suppose
φ : A→ X × Y is a bijection with X = {0, 1, . . . , n}
and Y = {1, . . . ,m}). The base points, that is the
ones in the level r0, are all zero F (x, 0) = 0; all the
points at the same level will have the same value
under F ; suppose we have F (x, y) given, then we
define F (x, y + 1) as the formula

F (x, y) + ‖gφ−1(x, y)− gφ−1(x, y + 1)‖

(3) we now use the iso-slicing algorithm with the new
hight value F .

(4) the end result of this procedure gives a family of
contour levels parallel to the xy-direction which are
isotropic along the geodesic paths measured on the
surface.

Having the contour trajectories enveloping the origi-
nal surface in a way which is isotropic concerning the re-
frigeration distribution of heat along the geodesic distan-
ces on the surface, we can then choose a cross-section for
the channels and generate the final structure as a square-
patch.

7 Conclusion

All this procedures and processes have been implemen-
ted in a computer system and proved to be efficient and
robust. Indeed, the fact that the data can be modelled as
a mathematical structure has the great advantage that it
characterizes completely the input data, the output data,
as well as the abstract structures which are involved in
any intermediate step in the process.
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